Dark Matter in the First Galaxies:

Cores or Cusps?

Andrew Davis Sadegh Khochfar, Claudio Dalla Vecchia TMoX Group arXiv:1311.1109

Build-up of the First Galaxies: Dark Matter Halo

 Universal density profile:

$$ho(r) = rac{
ho_s}{(r/r_s)(1+(r/r_s))^2}$$

 NFW profile has too little mass inside r₋₂(e.g. Navarro et al. 2004, 2010; Gao et al. 2008)

Build-up of the First Galaxies: Dark Matter Halo

 Dwarf galaxy rotation curves appear to have shallower dark matter profiles than

simulations predict

(e.g. Flores & Primack 1994, Moore 1994, Blok 2012, del Popolo et al. 2012, Amorisco & Evans 2012,...)

No universal inner slope observed (e.g. del Popolo et al. 2012)

Einasto Profile: $ln(\rho/\rho_s) = -2n[(r/r_s)^{1/n}-1]$

del Popolo et al. 2012

Build-up of the First Galaxies: Baryonic Impact

Adiabatic Contraction
 (Blumenthal et al. 1986)

- Leads to steeper cusp
- At least some galaxies

 (e.g. Sonnenfeld et al. 2012) and
 clusters (e.g. Cui et al. 2012)
 show evidence of
 adiabatic contraction

 $egin{aligned} \left[M_{
m dm}(r) + M_{
m b}(r)
ight] r = \ & \left[M_{
m dm}(r) + M_{
m b}(r_f)
ight] r_f \end{aligned}$

Gnedin et al. 04

Build-up of the First Galaxies: Baryonic Impact

- Baryons can create a cusp via Adiabatic Contraction (e.g. Gnedin 2004)
- Baryons can also destroy a cusp
 - Clumpy infall (e.g. Tonini et al. 2006; Romano-Diaz et al. 2008; Pedrosa et al. 2009, 2010; Abadi et al. 2010; Dutton et al. 2011)
 - Outflows via stellar/AGN feedback (e.g. Ma & Boylan-Kolchin 2004, Mashchenko et al. 2008, Martizzi et al. 2012, Pontzen et al. 2012, Pawlik et al. 2013)
- Can these processes occur in a cosmological context?
- What is the DM profile in a statistical sample in the earliest galaxies?
 - How often do modifications happen?

FiBY: First Billion Years Simulation

- Modified Gadget-2 via OWLS
- 4, 8, 16, 32 Mpc (co) boxes
- In 4 Mpc box:
 - m_{DM} ~ 6000 M_o
 - m_q ~ 1250 M_o
 - ~ 800 halos with >5000 DM particles

DM Density Enhancement: η

DM Density profiles

- Compare DM enclosed mass in FiBY versus
 DMO counterpart
 - Integral constraint
 - Correlates with difference in density slope

$$\eta = rac{M_{
m dm}^{
m FIBY}(r < 100\,{
m pc})}{M_{
m dm}^{
m DMO}(r < 100\,{
m pc})} \left(rac{\Omega_m}{\Omega_m - \Omega_b}
ight)$$

Davis et al. 2013

Distribution of η

Time Evolution of η

Time Evolution of η

Sample Halo Cycle

- Steeper slope with increase η
- Never reaches a true flat core
- Cycle tied to gas phase

Davis et al. 2013

Cusps via Adiabatic Contraction

- baryon fractions
- No evidence for adiabatic expansion

Impact of Reionization

 Mean evolution of η affected by photoheating during reionization
 DM density profile not just a function of halo mass

Davis et al. 2013

How Not to Create a Core

- Using model of Lackner & Ostriker (2010), predict mass lost due to dynamical friction via infalling stellar clumps
- $M_{DF} < M_{MAC}$
- Dynamical friction via baryon infall plays only small role in η

Cores via Explosive Feedback

 As gas is expelled, the DM responds to the new potential (e.g. Pontzen et al. 2012)

Davis et al. 2013

Predicting the Evolution of η

 The two models are able to reproduce the evolutionary trends in η

Future work: inner slope

Davis et al. 2014, in prep

Future work: comparison with observations

- Are local dwarf cores due to Nature or Nurture?
- FiBY halos can reproduce inner slope and scatter

Conclusions

- No universal level of enhancement (or decrement) due to baryons
 - No universal inner profile
- In halos with cold, dense gas adiabatic contraction explains cuspy center
 - Reionization inhibits cusp formation
- Cyclical evolution of η tied to star formation bursts and feedback driven outflows to create a core

Gas density