Faint SMGs: Ultra Dusty Low-Luminosity Galaxies at High-Redshift?

Chian-Chou Chen (T.C.)

Len Cowie, Amy Barger, Wei-Hao Wang, Jonathan Williams

ACS

Chen et al. 2014, ApJ, submitted arXiv: 1311.2943

> DEX X Workshop Jan 9th 2014

What are Sub-Millimeter Galaxies (SMGs)?

100 - 500 um 850 um ~1 mm

What are Sub-Millimeter Galaxies (SMGs)?

Obscured Starburst : $L_{IR} > 3 \times 10^{12} M_{\odot}$, SFR > 500 M_ \odot / yr

Massive : $M_{star} \sim 10^{11} M_{\odot}$ $M_{gas} \sim 10^{10} \sim 10^{11} M_{\odot}$

High redshift : z ~ I-5

Daddi et al. 2009

SMG Jigsaw Puzzle

Theoretical Modeling

William Cowley

Individual SMGs

James Simpson

SMG in galaxy clusters

Cheng-Jiun Ma

Bright SMGs? Faint SMGs? Why do we care?

Biggest Challenge in FIR/Submm Observations : Poor Resolution

A370 SCUBA

Cowie, Barger, & Kneib 2002

Biggest Challenge in FIR/Submm Observations : Poor Resolution

A370 SCUBA

Cowie, Barger, & Kneib 2002

Confusion

Elbaz et al. 2011

Confusion: Limited Amount of EBL Resolved

Oliver et al. 2010

Chen et al. 2013b

Bright SMGs :

Observed Fluxes above Confusion Limits Heavily Obscured High-z ULIRGs Progenitors of Local Massive Ellipticals

Faint SMGs :

Observed Fluxes below Confusion Limits Dominant Star-Former in the Dusty Universe Redshift Distribution? LIRGs? Relation to other Star-Formers?

What did we expect from faint SMGs?

- Stacking analysis suggested most of them at z < 2
- LBGs at $z\sim2$ shows they are less obscured => UV/Optical bright

Gravitational Lensing : Faint SMG Sample

Cowie, Barger, & Kneib 2002

Knudsen et al. 2008

- Follow-up by the Submillimeter Array (SMA)
- All observed by SCUBA-2 (Chen et al. 2013a,b)
- Well studied clusters deep multi-wavebands data available

SMA Results: 6 detections

Source Name	SMA R.A.	SMA Decl.	SCUBA R.A.	SCUBA Decl.	SCUBA	SCUBA-2	SMA
	(J2000)	(J2000)	(J2000)	(J2000)	$850\mu\mathrm{m}$	$850\mu\mathrm{m}$	$870\mu m$
	(h m s)	(d m s)	(h m s)	(d m s)	(mJy)	(mJy)	(mJy)
A370-5	•••		02 39 53.83	-01 33 37.0	2.17 ± 0.57	-0.01 ± 0.51	$< 1.68(4 \sigma)$
A2390-3	21 53 35.16	17 41 06.1	21 53 35.48	17 41 09.3	3.24 ± 0.78	2.71 ± 0.62	3.96 ± 0.59
A2390-5	21 53 34.37	17 42 01.5	21 53 34.15	17 42 02.3	2.64 ± 0.72	1.19 ± 0.62	4.72 ± 0.76
SMM J131128.6-012036			13 11 28.6	-01 20 36	2.6 ± 0.8	-0.95 ± 0.48	$< 2.76(4 \sigma)$
SMM J131129.1-012049	13 11 29.22	-01 20 44.5	13 11 29.1	-01 20 49	4.7 ± 0.8	4.39 ± 0.48	5.25 ± 0.70
SMM J131132.0-011955			13 11 32.0	-01 19 55	3.3 ± 1.0	3.28 ± 0.50	
a	13 11 31.93	-01 19 55.1					2.73 ± 0.64
b	13 11 32.30	-01 19 50.4					2.41 ± 0.59
SMM J131134.1-012021			13 11 34.1	-01 20 21	$3.2{\pm}1.0$	4.32 ± 0.52	$< 1.76(4 \sigma)$
SMM J131135.1-012018	13 11 34.95	-01 20 17.2	13 11 35.1	-01 20 18	$4.9{\pm}1.6$	4.15 ± 0.54	3.92 ± 0.61
							1.

Chen et al. 2014

 First case of single-dish detected faint SMGs broken into multiple sources, ~20% multiple fraction.

SMA Results: Lack of optical/IR/radio counterparts

SMA Results: Low Recovery Fraction

SMA Results: Faint SMGs are Optically Faint

ID	Magnifications	S _{870,intrinsic} (mJy)	S _{F125W,intrinsic} (mag)	\mathbf{z}^{b}	$\log(L_{8-1000\mu m})$
A2390-3	4.8 (4.7-5.3)	0.83 (0.64 - 0.97)	>26.8	> 3.7	11.8 - 12.0
A2390-5	45 (> 45)	0.12 (< 0.12)	>28.2	>4.0	< 11.1
SMM J131129.1	19(16-22)	$0.10 (0.08 - 0.12)^a$	26.6 (26.5-26.8)	2.600	$10.9 - 11.1^{a}$
SMM J131132.0a	10 (>10)	0.34 (< 0.34)	>25.6	>0.5	< 11.6
SMM J131132.0b	20 (> 20)	0.15 (< 0.15)	>25.4	> 0.5	< 11.8
SMM J131135.1	6 (3–9)	0.65 (0.37 - 1.51)		> 0.5	11.6-11.8

Chen et al. 2014

Stacking Analysis Confirm Our Results

- Also in Wang et al. 2006 and Dye et al. 2006
- ~50% of the EBL is still missing in stacking analysis using medium deep NIR/MIR sample.

Implications: High-z or Ultra Dusty?

Burgarella et al. 2013 + Bouwens et al. 2009 + Swinbank et al. 2013

Many high-z obscured star-formation yet to be found ?

Implications: High-z or Ultra Dusty?

Reddy et al. 2012

• Ultra dusty, low luminosity sources?

Summary:

- Using the SMA to pinpoint 6 faint SMGs behind wellstudied massive lensing clusters, all confirmed by SCUBA-2.
- Most very faint in optical and IR and some even missed in extremely deep radio maps, suggesting many faint SMGs are high-z and/or very dusty that can only be probed through direct submm observations.
- This pilot study suggests that the properties of the faint SMGs will have fundamental impacts on our understandings of the dusty universe, as well as the connections between obscured and unobscured star formation.