The Evolution of AGNs in EAGLE

Yetli M Rosas Guevara EAGLE TEAM: (Evolution and Assembly of Galaxies and their Environments Pl: J. Schaye R. G. Bower, M. Furlong, C. Frenk, T. Theuns, R. Crain, C. Dalla Vecchia, C. Booth+ Virgo Consortium

DEX Workshop, Jan 2014

Durham

Outline

- Motivation
- •The BH model in cosmological simulations
- AGN luminosity functions (preliminary results)
- •Summary and Future work

Motivation:

What is the the role of the BHs in the evolution of the galaxies?

The shape of the galaxy mass function

Discrepancy between halo mass function and stellar mass function

The shape of the galaxy mass function

Feedback from SN + AGN to match up stellar mass function

Bower et al. 2006; Croton et al. 2006

Tools: Cosmologic Simulations EAGLE

State-of-art, high resolution simulation follows evolution of a 100Mpc region. Advanced subgrid physics included (Michelle Furlong's talk)

Image credit **Richard Bower**

The BH accretion model

in Cosmological simulations Arxiv:1312.0598

The BH physics in cosmological simulations

Created for

simulations

at low

resolution

 $\sim 10^{8}$

OWLS: Booth & Schaye 2009 Springel et al 2005 BH seeds (10⁵Msun) are injected into well resolved halos (in our simulations ~1e10 Msun).

Growth BH

⁰⁰⁵ **BH mergers** and **Gas accretion** usually^{Msun/particle} modelled as **Bondi accretion limited by Eddington**

Thermal AGN feedback

Stochastic approach, energy fraction stored until $E_{_{BH}} > E_{_{thres}}$ (enough to heat 1 neighbour by 10⁸ K)

Accounting for AM

Observationally motivated: Gas in disk galaxies, merging galaxies and luminous starstburst seem to reside in rotationally supported discs (Downes & Solomon 1998)Suppresion of BH accretion rates depends on V_{circ} and C_s sound

Effects of the AM model on galaxies

Rosas-Guevara et al. 2013

Evolution of the BHs in relative small suppression the AM model

Evolution of the BHs in the AM model

Movie credit: Richard Bower

The Evolution of AGNs IN THE VIRTUAL UNIVERSE OF EAGLE

Motivation: EAGLE

Main goal : Reproduce the stellar mass function at z=0

Advantages of EAGLE

Understand the connection between the evolution black holes and evolution of galaxies.

Hard X ray AGN luminosity simulation

Soft X-ray Luminosity function

Fraction of obscured AGNs calculated from an empirical law (Hasinger et al 2008).

Depends on luminosity and weakly on redshift

Total number of densities of quasars

Summary and future work

- →EAGLE Universe supports that AGN feedback produces the break in the galaxy mass function.
- →A new model of BH accretion accounting for angular momentum reproduces the stellar mass function.
- →Angular momentum (regulates the frequency of outburst.
- →EAGLE designed to reproduce the SMF at z=0, perfect laboratory to study the connection between BHs and Galaxies.
- →AGN luminosities in Hard X and Soft X rays in good agreement. with observations
- → Work in progress: Bolometric AGN luminosity, Soltan argument and comparison with SFRs.