

UNITED KINGDOM · CHINA · MALAYSIA

Clues to the formation of lenticular galaxies from the quenching of star formation in spirals

Evelyn Johnston University of Nottingham

Supervisors: A. Aragón-Salamanca, M. R. Merrifield Submitted to MNRAS

Transformation of Spirals to S0s

To transform a spiral into an S0 you need to

- Quench star formation
- Increase B/T
- The fraction of S0s increases with increasing environment density and decreasing redshift while the fraction of spirals decreases.

Dressler et

al. 1980

Sample Selection

- 21 high inclination (i>40°) S0 galaxies from the Virgo Cluster
- Long-slit spectroscopy from Gemini/GMOS
- Wavelength ranges of $4300 < \lambda < 5500$ Å
- -22.3 < M_B < -17.3
 - Exposure times ~ 20-200 minutes, S/N of peak of spectrum \geq 50

Spectroscopic Bulge-Disc Decomposition

- Obtain a good quality long-slit spectrum of a galaxy
- Correct spectrum for kinematics
- Decompose light profile at each wavelength

Spectroscopic Bulge-Disc Decomposition

Integrate to get total light of bulge and disc for that wavelength bin

 \bullet

Plot against wavelength to obtain high-quality spectra representing purely the bulge and disc light.

Star Formation Histories of the Bulge and Disc

- Hβ, Mg and Fe line strength indices measured, and plotted on SSP models of Vazdekis et al (2010)
 - Estimates of relative global, light weighted ages and metallicities for the bulge and disc were made from these models

Relative Ages and Metallicities

- Bulges appear to contain younger and more metal rich stellar populations than the discs of the same galaxy.
 - Star formation continued in the bulge after it had finished in the disc

Star Formation Histories

Mg/Fe abundances tell us about the SF timescales

- Large Mg/Fe => shorter τ_{SF}
- Small Mg/Fe => longer τ_{SF}

Discs show no correlation:

Since discs are old, the observed ages and metallicities represent the sum of all the different disc stellar populations

Star Formation Histories

Mg/Fe abundances tell us about the SF timescales

- Large Mg/Fe => shorter τ_{SF}
- Small Mg/Fe => longer τ_{SF}
- Bulge stellar populations show increasing Mg/Fe ratios with increasing ages:
 - Continuous SF since bulge was created?
 - Bulge stellar populations created from Fe-enriched gas in later
 SF event?

Origin of the Young Bulge Stellar Populations

- Bulge and disc stellar populations show a correlation
- The offset shows bulges have enhanced Fe-enrichment
 - Fe-enriched disc gas dumped in the central regions, until a final SF event created the young bulge stellar populations and quenched all star formation

EJ, Aragón-Salamanca & Merrifield, Submitted

Transformation of Spirals to S0s

- To transform a spiral galaxy into an S0 you need to
 - Quench star formation
 - Increase B/T

• Our results give a clearer picture of how this transformation occurs

1. Disc undergoes continuous SF until quenching begins During quenching,
 Fe-enriched gas is dumped in
 the central regions

3. Bulge undergoes
a final SF event,
using up the
dumped disc gas
and truncating all
SF in the galaxy

4. After all SF has been quenched, the spiral galaxy transforms into an S0