Star Formation VS Mergers The stellar mass growth of massive galaxies from z=3 using number density selection techniques

Jamie Ownsworth

4th year PhD student Supervisor: Prof Conselice

DEX workshop Jan 2014

UNITED KINGDOM · CHINA · MALAYSIA

Introduction

Introduction

Star Formation

Mergers

Bluck +12

This Work

Investigate the processes that drive the stellar mass growth of massive galaxies over 0.3<z<3.0

- Dominant process in stellar mass growth?
- How does this vary in redshift?
- Disentangle Major and Minor mergers

UKIDSS Ultra Deep Survey

```
Deep infra-red survey covering ~0.8 sqr deg
```

Limiting magnitudes achieved so far (AB, 5σ, 2" aperture): **DR8: J=24.9, H=24.2, K=24.6 (504 hours)** DR10: J=25.3, H=24.8, K=25.0 (840 hours)

0.8 square deg

Stellar masses and photometric redshifts derived from SED fitting to 11 bands - U, B, V, R, i, z, J, H, K, IRAC 1, IRAC 2

Star Formation Rates

UV 2800A derived SFRs

 $SFR_{UV}(M_{\odot}yr^{-1}) = 8.24 \times 10^{-29} L_{2800}(ergs s^{-1} Hz^{-1})$ Kennicutt +98

Dust correction from SED fitted UV slope

$$A_{2800} = 1.67\beta + 3.71$$

Merurer +99 Fischera & Dopita +05

UVJ selection technique to correct SFRs of passive galaxies

SFR VS Stellar Mass

Galaxy Selection 1

Constant number density selection

- 1 X 10^-4 Mpc^-3

- Spacial density of the direct progenitors is invariant with time

- i.e. all massive galaxies at z=0.3 have a progenitor at all redshifts

Integrated stellar mass functions from Mortlock (in prep)

Major Mergers

Bluck +12

Galaxy Selection 2

Major merger adjusted number density selection

- 1 X 10^-4 Mpc^-3 at z=0.3

- Spacial density corrected to account for galaxies lost to major mergers

Integrated stellar mass functions from Mortlock (in prep)

Galaxy Sample

Stellar Mass Growth

Stellar Mass Growth

Stellar Mass Growth Rates

Mergers VS SFR

Dominate Stellar Mass Growth Process 1

Major Merger Progenitors

Major Merger Rate

Minor Merger Rate

Dominate Merger Process

Dominate Merger Process

Dominate Stellar Mass Growth Process 2

Dominate Stellar Mass Growth Process 2

Relative Contributions

Relative Contributions

Summary

The progenitors of the most massive galaxies grow in stellar mass by a factor of 4 between 0.3-3.0

Star formation

Mergers

- between 0.3-3.0 builds 23+/-8% of massive galaxies stellar mass at z=0.3
- Dominant stellar mass growth process at z>1.5+/-0.2

Major Mergers

- account for 17+/-15% of the z=0.3 stellar mass
- are at no point are solely the dominant form of stellar mass growth

- between 0.3-3.0 builds 52+/-15% of massive galaxies stellar mass at z=0.3
- Dominant stellar mass growth process at z<1.5+/-0.2

Minor Mergers

- account for 35+/-14% of the z=0.3 stellar mass
- at z<1.2+/-0.4 are solely the dominant form of stellar mass growth

Gas accretion + Size evolution

Passive Galaxy Selection

