The Fundamental Plane of Black Hole Activity

David Nisbet DEX Meeting January 2016

Two Types of AGN

Radiative-Mode AGN: Accrete at > ~ 1% of Eddington Limit

Jet-Mode AGN:

Accrete at < ~ 1% of Eddington Limit

The Fundamental Plane of Black Hole Activity

Accretion Flow: X-ray Luminosity

Black Hole: Mass

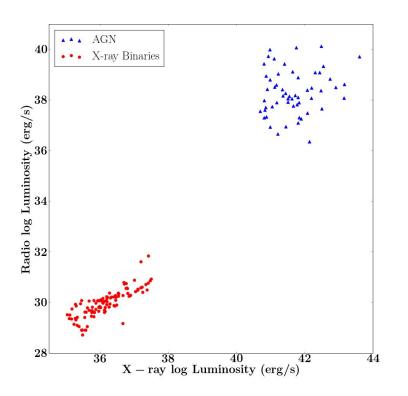
Radio Jets: Radio Luminosity

 $L_{R} = a L_{X}^{\beta} M_{BH}^{\gamma}$ or $\log L_{R} = \alpha + \beta \log L_{X} + \gamma \log M_{BH}$

Data Base

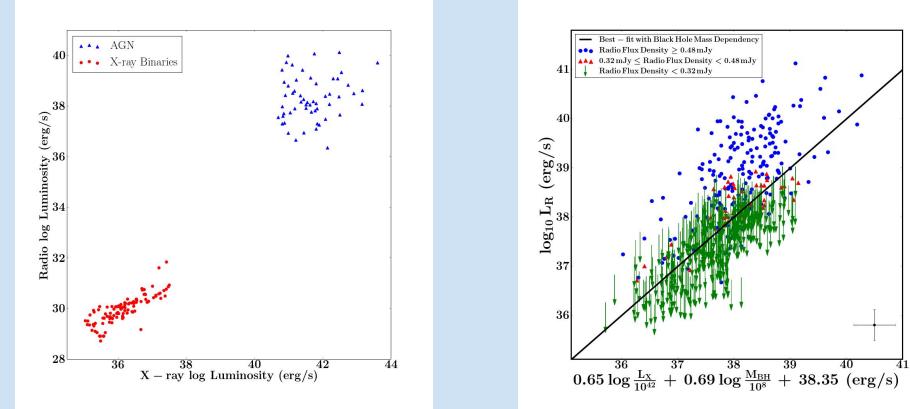
Jet-mode AGN :

3XMM + SDSS + FIRST

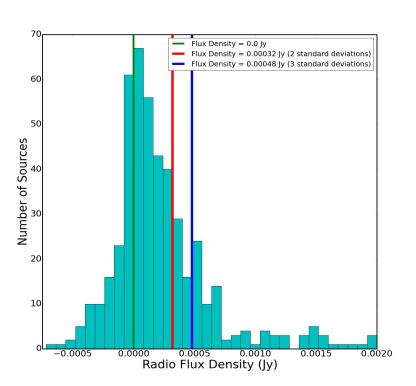

- + quality controls
- + 5 diagnostic tests
- = 576 LINERs

X-ray Binaries : 130 observations from 7 XRBs

Sagittarius A* :

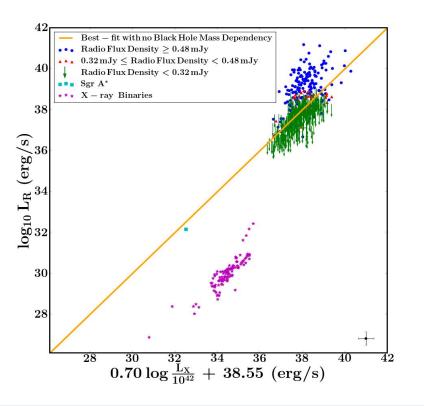

Black Hole at the centre of the Milky Way

One Approach

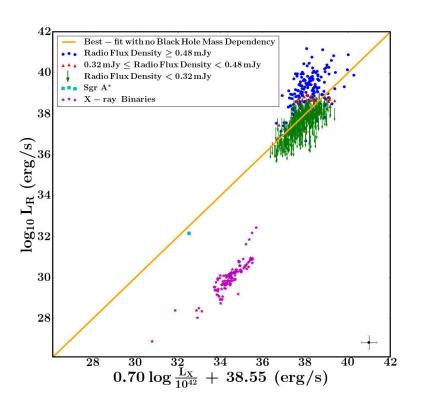


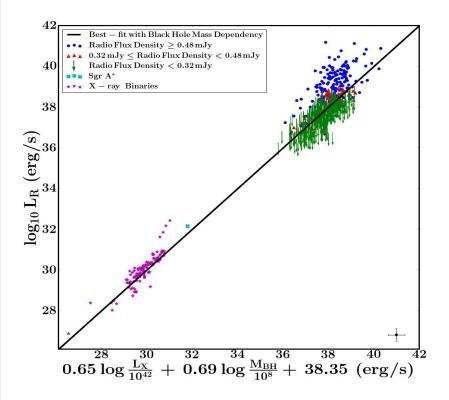
One Approach

... and Ours



Noisy Radio Data

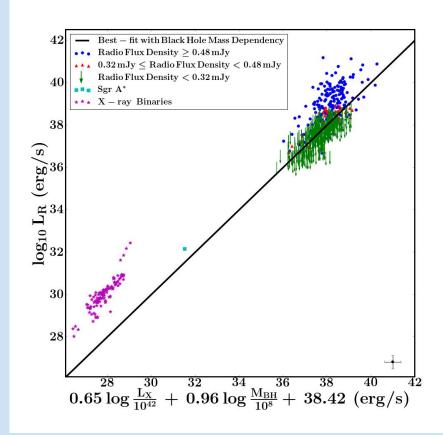

<u>S / N</u>	Number of Sources
> 3	194
2 - 3	45
0 - 2	208
< 0	129

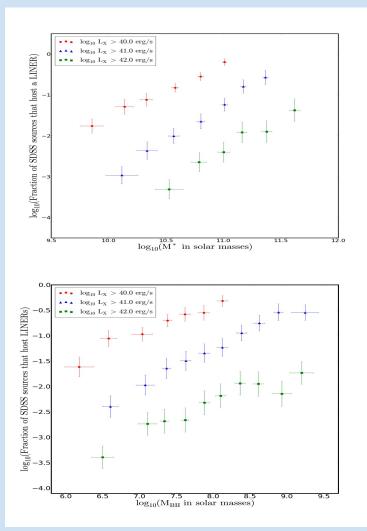

Without M_{BH} Dependency

Without M_{BH} Dependency

With M_{BH} Dependency

M_{BH} - sigma Relationship


$$M_{BH} = \alpha \sigma^{\beta}$$


Tremaine et al (2002): $\beta = 4.02 \pm 0.32$

Novak et al (2006):
$$\beta = 4.59 \pm 0.34$$

McConnell et al (2011): $\beta = 5.12$

McConnell & Ma (2013): $\beta = 5.64 \pm 0.32$

Other Results

- 1. Fraction of galaxies hosting a LINER is a strong function of both stellar mass and black hole mass.
- 2. A significant proportion (> 50% on average) of the LINERs' energy is released in the jets.
- 3. That proportion rises with increasing black hole mass.
- 4. The Eddington ratio is inversely correlated with black hole mass.
- 5. Mechanical luminosity becomes progressively more dominant at lower Eddington ratios.
- Hints that the properties of a black hole (or of its accretion flow) change at a mass of around 10⁸ solar masses.

The Fundamental Plane of Black Hole Activity

David Nisbet

DEX Meeting January 2016

Problem 2 : Unknown Scatter

Radio Flux

X-ray Flux

Black Hole Mass

Timing Differences, beaming effects, absorption etc

Intrinsic Scatter

Unknown

Known

Procedure to find the Best Fit

- 1. Make : initial estimates of α , β , γ , and σ .
- 2. Calculate: $\log L_R = \alpha + \beta \log L_X + \gamma \log M_{BH} + N_1 \sigma$.
- 3. Allow : N_1 to vary in small steps from -10 to +10.
- 4. Convert : each radio luminosity to the equivalent radio flux density.
- 5. Calculate : how many standard deviations, N_2 , between each predicted radio flux density and the observed radio flux density.
- 6. Calculate : $N_{min, i} = (N_1^2 + N_2^2)^{\frac{1}{2}}$, the minimum value for each source, i.
- 7. Calculate: $\ln L = -0.5 \Sigma_i (N_{min,i}^2 + \ln (2\pi\sigma^2)).$
- 8. Determine: the values of α , β , γ , and σ that maximise the log likelihood function.