Using short GRBs to forecast GW detections at Advanced LIGO*

(*How I learnt to stop worrying and embrace ignorance)

Benjamin Giblin | 1st yr PhD, University of Edinburgh

Collaborators: Thomas Riley (Uni. Of Amsterdam), Will M. Farr & Ilya Mandel (Uni. Of Birmingham).

Short VS long gamma-ray bursts (GRBs)

	Short GRB	Long GRB
Duration	<2s	>2s
γ-rays	Hard	Soft
Progenitor	Merging compact object binaries	Rapidly rotating core collapse SN
Optical/X-ray afterglows	Yes	Yes
Gravitational waves?	YES! The theoretical GW signal for these events is well understood.	Yes But the signal might be different for each burst. Less promising GW progenitors.

Simulation of merging neutron stars in a binary. (Max Planck Institute for Gravitational Physics).

Observing GRBs

(NASA's Godard Space Flight Centre).

Swift (2004 - Present).

The factors limiting inference

- Small number stats.; we only know *z* for ~40% of the detected sGRBs.
 - Observing constraints, dark afterglows and host galaxy confusion.
- Sample contamination from collapsars (LGRBs).
 - >Skew inference to shorter time delays.
- Selection effects on...

The optical afterglow; dark GRBs reside at *high z*.
The GRB itself; dark GRBs reside at *low z*.

Optical transient

Possible host galaxies

Recipe: <u>Testing the robustness of inference of the delay time distribution</u>.

Convolve your delay time distribution(s) with an SFR
 → the distribution of sGRBs in time.

Apply observational constraints: adopt/fit a GRB luminosity

function, to derive $p(observed|t_{GRB})$.

• Maximum likelihood estimation for the parameter(s) (τ) of the delay time distribution: $\mathcal{L}(\tau) \propto \prod_{i} \left[p_{SFR}(t_i, \tau) * p_{delay}(\tau) \right] p(obs|t_i)$

• Check if the answers change (a lot) when you model contamination/selection effects.

Our Scenarios

- Scenario I: The sample is pure and unbiased.
- Scenario II: The sample is unbiased but has collapsar contaminants: amend the time delay distribution.

$$p_{\tau}(\tau) = f\delta(\tilde{\tau} - \tau) + (1 - f)\delta(\tilde{\tau})$$

$$f \equiv f_{merger} =$$

$$fraction of sample that are mergers accommodates collapsars (\tilde{\tau} = the dummy integration parameter)$$

Our Scenarios (cont'd)

- Scenario III: The sample is pure, but the afterglows are subject to Malmquist bias.
 - ≻Missing high-z GRBs from sample → Randomly assign z to dark GRBs from U(2 < z < 4) distribution.
- Scenario IV: The sample is pure, but the GRB itself is subject to Malmquist bias.
 - ≻All GRBs are at low-z → Randomly assign z to *all* unknown redshift GRBs from U(z < 1) distribution.

The Results

		Results		
Scenario	Description	δ-function	Gaussian	
Ι	Pure, unbiased sample	τ ≤ 1.77 Gyr	$\mu = (3.84 \pm 0.80)$ Gyr	
II	Contaminated, unbiased	$\tau = (4.02 \pm 0.90)$ Gyr f _{merger} = 0.81 ± 0.17	N/A	
III	Malmquist bias on afterglow	$\tau = 0.0_{-0.0}^{+0.02}$ Gyr	$\mu = 0.0_{-0.0}^{+0.2} \text{Gyr}$	
IV	Malmquist bias on GRB	N/A	$\mu = (3.69 \pm 0.35)$ Gyr	
		Bottom line: these rows illustrate how we're very		

Take Home Message:

- We want to infer the time delay distribution to forecast GW detections at advanced LIGO.
- BUT inference faces considerable limitations.
- We get very different time delay distributions when we (crudely) model contamination and afterglow Malmquist bias.
- Unlikely to accurately forecast GW detections using short GRB observations.

Suggested Question...

"Is there a sensible way to eliminate collapsar contaminants from our sample of mergers?"

Contention with literature...

Wanderman & Piran (2014): constant delay of (2.9 ± 0.4)*Gyr* OR (3.9 ± 0.5)*Gyr* → Inconsistent with results for δ-function: τ ≤ 1.77 Gyr
 When we omit the (probably a contaminant) high-z GRB, we get more consistent results;
 (3.84 ± 0.80)*Gyr*

Their contamination estimate of \approx 20-40% is also consistent with this work.

→ Virgili et al (2011): delay ~ $N(\mu \sim 2Gyr, \sigma \sim 1Gyr)$ → Inconsistent with our results for Gaussian, assuming a pure unbiased sample: $\mu = (3.84 \pm 0.80)$ Gyr

Scenario I: The sample is pure & unbiased

delay ~ $N(\mu, \sigma = 1Gyr)$

Constant τ delay (delay ~ δ -function)

Scenario II: The sample is unbiased but contaminated

 τ/Gyr

Amend the δ -delay time distribution to allow for collapsars with ~no delay:

$$p_{\tau}(\tau) = f\delta(\tilde{\tau} - \tau) + (1 - f)\delta(\tilde{\tau})$$

$$f \equiv f_{merger} =$$
New term
fraction of sample
accommodates
that are mergers
collapsars
($\tilde{\tau} = the \ dummy \ integration
parameter)$
Result:
$$\tau = (4.02 \pm 0.90) Gyr$$

$$f_{merger} = 0.81 \pm 0.17$$

Scenario III: The sample is pure, but the afterglows are subject to Malmquist bias

Assume the reason we failed to see afterglows for "dark" GRBs, is because they were at high-z. Consider *extreme* case;

→ Randomly assign z to dark GRBs from U(2 < z < 4) distribution.

Results:

• Constant τ delay (delay ~ δ -function) $\tau = 0.0_{-0.0}^{+0.02} Gyr$

Scenario IV: The sample is pure, but the GRBs themselves are subject to Malmquist bias

Assume that in order to observe a GRB, it must be at low redshift; *Extreme* case:
→ Randomly assign z to *all* unknown redshift GRBs from U(z < 1) distribution.

Results:

Constant τ delay (delay ~ δ-function)
 N/A: intrinsic limit on maximum delay time.

• delay ~
$$N(\mu, \sigma = 1Gyr)$$

