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A B S T R A C T  
 

An algorithm has been developed to measure the topology (genus 

statistic) of the galaxy distribution in mock catalogues designed to 

mimic upcoming results from the 2-degree field (2dF) redshift survey at 

the Anglo-Australian Telescope. The precision with which this will be 

possible with the 2dF survey depends upon the smoothing length but 

is around 6% of the maximum genus. Sparse sampling of galaxies has 

been identified as a major source of systematic errors. The results from 

a flat CDM model show non-linear gravitational evolution on small 

scales. However, for smoothing lengths above ~10 h-1 Mpc, they are 

consistent to a 95% confidence level with a random-phase hypothesis. 

Deviations from this are measured by several ‘metastatistics’: the 

width, shift and amplitude drop of the genus curve compared to a 

Gaussian field with the same power spectrum.  
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2    I N T R O D U C T I O N  

 

The AAT 2dF galaxy redshift survey (GRS) will soon obtain a complete quarter of a million 

optical spectra of galaxies in two contiguous areas of the sky: one around the South galactic pole 

and one near the North galactic pole. Galaxies will be mapped out in spatial and velocity 

distributions according to their luminosity and spectral type. This will finally enable cosmologists 

to investigate the dynamical and star-formation history of galaxies and to quantify the forms and 

shapes in     large-scale structure. Previous surveys have only observed a projection onto the sky, 

like the APM catalogue (Maddox et al. 1990), or measured redshift in small and disjoint slices of 

declination like the Durham/UKST redshift survey (Radcliffe et al. 1996). These separate slices of 

space are very useful for calculating the power spectrum via a two-point correlation function, but 

tracings of very large structure become lost in the gaps between data. Not even the CfA redshift 

survey (Huchra et al. 1992) yielded significant data because the surveys were only the size of the 

structure itself, which can therefore vary greatly from one volume to the next. It is even still 

unknown (Springel et al. 1998) whether the overall galaxy distribution is best described as 

filamentary, wall-like or cellular. A survey of large, contiguous regions like the 2dF GRS can hope 

to resolve this long-standing debate and also to constrain cosmological models of galaxy formation. 

 

In the standard cosmological model, large-scale structure arises from primordial zero-point     

energy-density fluctuations during inflation. These fluctuations have random phases or a 

Gaussian density distribution; which has a known topology. During inflation, the fluctuations 

grow beyond the scale of quantum effects and for the next 10 billion years evolve just according to 

gravity, and seed galaxy formation. On small scales around over-dense regions, this gravitational 

evolution is non-linear: matter densities increase rapidly through accretion, phases become 

correlated, and the Gaussian distribution is destroyed. However, on scales larger than several 

times the mass correlation length (such that the local average density is close to the global average: 

Weinberg, Gott & Melott 1983) accretion is less rapid and the topology of the dark matter 

distribution is maintained. After smoothing over a suitably large volume and assuming that light 

faithfully traces mass, redshift surveys of present-day galaxies map out a 3D scalar field of 

density fluctuations which have evolved from their inflationary precursors in a simple way. This 

is true even accounting for biased galaxy formation. Any linear transformation of the density field, 

which would distort the power spectrum, still preserves the ordering of densities in the luminous 
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matter distribution – from which we can recover the topology of the underlying dark matter 

unhindered (Springel et al. 1998). 

 

Several theoretical alternatives exist to predict the evolution of density fluctuations beside the 

standard cosmological model. Each proposes a different mechanism for seeding the galaxies we 

observe today, all or none of which may have made a significant contribution in the real universe. 

Bottom-up scenarios from zero-point density fluctuations produce a hierarchical clustering of 

galaxies, but only in a universe dominated by weakly interacting, cold dark matter. If the dark 

matter is instead mainly relativistic (hot) particles, then small-scale fluctuations are quickly 

smeared out and very large structures form first. These are themselves distributed as a Gaussian 

field but later fragment via a top-down process into individual galaxies with filamentary or cellular 

topologies. Even more esoteric possibilities for seeding galaxies such as monopoles, cosmic strings 

and textures, or the energetic explosions of supernovae, would produce completely different large-

scale structure and very non-Gaussian density fields today. 

 

Drawing isodensity contours through the galaxy density field yields a family of surfaces in !3, 

whose properties can be studied using the four Minkowski functionals, as introduced by Mecke 

et al. (1994). Together, these give a complete quantitative classification of the contour’s 

morphology and topology (Hadwiger 1957), as a function of the density " at which it is drawn. 

They are the volume; the surface area; the integrated mean curvature over the surface and, most 

importantly, the Euler-Poincaré characteristic #E(") which represents its connectivity. All are 

analytically calculable for a random-phase density field (Schmalzing & Buchert 1997), and 

predictions within alternative cosmologies can be obtained via n-body simulations or techniques 

of semi-analytic and semi-numeric models of galaxy formation. Colley et al. (1999) present 

suggestive evidence that these evolved density fields would be sufficiently distinguishable for the 

larger Sloan Digital Sky Survey (SDSS) to be able to constrain or rule out some of the speculated 

processes. It will be interesting to repeat their analysis and find the constraints possible from the 

more complicated geometry of the 2dF GRS. 

 

This paper is structured in the following way. Background theory from topology and from 

cosmology is outlined in section 3. Section 4 deals with tests (on a Gaussian density field) of the 

genus algorithm, to ensure its validity and realise its limitations. The algorithm is then applied to 

mock 2dF catalogues and the results discussed in section 5. Conclusions are drawn in section 6.
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3   Theory 

3 $ 1    B A C K G R O U N D  T O P O L O G Y  

 

The mathematical definition of a surface is the local requirement that a small rubber sheet (onto 

which may be drawn !2 co-ordinate axes) may be stretched and placed anywhere onto the surface, 

in the same way as a patch is placed on a bicycle tyre. The stretching and bending are done in the 

external, embedding space; here !3. If one of the co-ordinate axes on the sheet is bent down and 

the other up, we get a ‘Pringle’. 

 

 Figure 1. Hyperbolic point: !<0 

 

The directions with the minimum or maximum amount of bending or normal curvature2 %n are 

known as the principal directions. In this case, the principal directions are along the two axes. The 

mean curvature H is defined at each point to be the average of the two values of %n in the principal 

directions. The Gaussian curvature % is defined to be their product. Since the principal directions 

here bend in opposite ways, their normal curvatures have opposite signs and the product of these 

is % < 0. This is a hyperbolic point. 

 

If the local rubber patch is stuck onto something like part of a sphere, it has to bend the same 

amount in all directions. Since the normal curvature is the same in any direction %n
min = %n

max, any 

directions can be called the principal directions and % = (%n
min)2 > 0. This is an elliptic point. 

 

 

Figure 2. Elliptic point: !>0 

                                                

2
 %n is the reciprocal of the 2

nd
 derivative of position in !

3
. On a sphere, %n = 

1
/r. This is the component of the total 

curvature in the direction of the normal vector to S – or that which is necessary purely for a curve to stay on S. 
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% is a local quantity which can be defined everywhere by properties of the surface at that point 

alone. But the Gauss-Bonnet theorem in differential geometry makes an incredibly powerful and 

very impressive link from these local properties to a global statement about the entire surface, S 

 

,                                   (1) 

 

where #E is the Euler-Poincaré characteristic. #E represents an aspect of the curvature across the 

entire surface in just one number. For a compact surface (continuous and finite in extent) there is 

no boundary, so the Gauss-Bonnet theorem reduces to 

 

.                                                     (2) 

 

For example, a sphere has everywhere positive curvature %, so #E > 0. It is easy to check that in 

fact %=1/r2 and hence #E=2. Integrating over two spheres next to each other gives a total #E=4. A 

torus consists of elliptical points with % > 0 on the outside half, and hyperbolic points with % < 0 

on the inside half. When the integral is done, these balance out to give #E=0. A double-holed torus 

has extra hyperbolic points and consequently #E= -2. Furthermore, these results apply not only 

to simple shapes but also to anything homeomorphic to them. That is elastically deformable, like 

a wineglass is to a sphere, a teacup is to a torus and a pair of scissors is to a double-torus. 

 

It is useful to simplify the numbers by classifying shapes by their genus 

 

.                                                    (3) 

 

The extra 1 is included following a mathematical tradition. This is generally negligible compared to 

a measured genus ~1000 in a density field and, when definitions vary, it is often omitted. For a 

single surface, the genus as defined here is just the number of ‘handles’. A wineglass has genus 

zero, a teacup has genus one and scissors have genus two, etc. For several disjoint surfaces, it 

must be remembered that #E is additive. In a field made of many separate regions, as an isodensity 

contour may easily be, the genus is a measure of its connectivity  
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Weinberg, Gott & Melott (1987) rather aptly describe a field with negative genus as having a 

“meatball topology” and a field with a positive genus as having a “swiss-cheese topology”.  

 

A theorem by Poincaré in the related field of integral topology makes it possible to calculate this 

genus for any arbitrary surface. He used a network of triangles to cover surfaces and form a lattice 

within them. A complicated proof (see Armstrong 1983) then gives a simple relation between the 

genus and the number of triangles, vertices and free edges in this lattice. For computer algorithms, 

it is easier to use a cubic grid, but the principle is no different. Joining up all points contained 

inside a surface and counting the number of cubes, squares, lines and points,  

 

(5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Simple worked examples 

to idemonstrate Poisson’s 
theorem. 
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The power spectrum of a scalar field contains information about the amplitudes of its Fourier 

transform components. The genus curve g(") is complementary to the power spectrum and 

contains information about their phases. Hence, both measurements can be usefully combined. 

 

3 · 2    R A N D O M - P H A S E  H Y P O T H E S I S  

 

In the standard cosmological model, the phases of the Fourier transform density fluctuations are 

random because they arise via (stochastic) zero point quantum energy density fluctuations during 

inflation. This leads to a Gaussian distribution of densities in the universe once the field has been 

smoothed. Data from mock 2dF catalogues and from n-body simulations will throughout be 

compared to an artificially Gaussianized field. This can be manufactured either by randomising 

the phases of its own Fourier transform; or by starting instead with many random (Poisson) 

galaxy co-ordinates which also become Gaussian in the limit of a large number of points. By 

varying the number of points in this latter method, it is also possible to investigate the effects of 

survey sensitivity and completeness. Random-phase fields are important for the standard 

cosmological model and because their genus is known analytically. Doroshkevich (1970) shows 

that for isocontours of density " in dimensionless units of standard deviations away from the 

mean3, the genus curve of a Gaussian field always has the same shape (see figure 5) 

 

.                                           (6) 

 

The genus reaches a maximum at the mean density " = 0 when the contour is multiply connected 

and becomes negative for |"| > 1 as the field separates into isolated regions about individual 

clusters or voids. The amplitude A is a positive constant determined by the slope of the power 

spectrum (Weinberg, Gott & Melott 1987) 

 

,                                               (7) 

where 

,                                                 (8) 
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which can be evaluated in general by numerical integration over the power spectrum. Our genus 

algorithm (see appendix A1) uses a Gaussian window function to first smooth the field. 

 

.                                         (9) 

 

The smoothing length4 rsm picks out a distance scale at which to quantify the large-scale structure. 

Small values could be used to isolate individual regions of non-linear galaxy formation for 

investigation, but this study is interested in large formations with a typical scale (and therefore 

rsm) generally above ~4h-1 Mpc. In the case of a simple power law power spectrum 

P(k) ' kn  smoothed by convolution with the window function of equation (9), Weinberg, Gott 

and Melott (1987) show that 

.                                                (10) 

 

Qualitatively, a field dominated by small-scale power (with high n or smoothed only by rsm much 

shorter than the mean galaxy-galaxy separation) is corrugated and pockmarked by fluctuations 

around individual galaxies. The integral for <k2> diverges in equation (8) and the amplitude of the 

genus curve increases. Furthermore, since the smoothing length provides the only characteristic 

length scale for a Gaussian field, A necessarily scales as 1/rsm
3 for a fixed survey volume (see figure 

7). 

 

 

3 · 3    A L T E R N A T I V E  T O P O L O G I E S  

 

The preceding section considered only the standard cosmological model in which galaxy formation 

is seeded by a bottom-up process of accretion onto over-dense regions created from zero point 

fluctuations during inflation. These fluctuations survive until the epoch of (re)combination in an 

arena of weakly interacting cold dark matter (CDM) and result in a hierarchical clustering of large-

scale structure. This is the most thoroughly studied scenario, because random-phase models can 

be characterised purely by their power spectrum and are easier to handle mathematically. It is also 

                                                                                                                                                         

This is a trivial scaling to implement, but the convenient definition of " makes even this unnecessary. 
4
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the most intuitive (and likely?), but not the only model. Other possible seeds of galaxy formation 

have been suggested from particle physics or from astrophysics. These include the same density 

fluctuations but immersed in different dark matter; or instead more esoteric topological defects 

and energetic supernovae explosions from a first generation of stars in a chain reaction sweeping 

across the early universe. These all manufacture large-scale structure with different topologies 

today and it is the task of the 2dF GRS to constrain these speculative models via departures from 

Gaussianity in the observed density field.  

 

A species of neutrino with a mass of a few tens of electron volts would be sufficient to account 

for all the dark matter necessary to gravitationally bind baryons and produce structure in the 

universe. In the adiabatic hot dark matter (HDM) model, familiar neutrinos replace the unknown 

and uncertain material of CDM. The term “hot” comes from their relativistic velocities at high 

redshift z > zeq. High speed free-streaming into large voids and the smoothing effect of radiation 

pressure on baryons destroys small-scale density fluctuations and maintains coherence at scales 

up to the Hubble length until zeq. Huge structures with a mass comparable to rich clusters first 

collapse into proto-walls known as Zel’dovich pancakes, which only then fragment top-down 

into individual galaxies much later. A local sheet of galaxies known as the fundamental plane has 

indeed been observed: which does look somewhat like a pancake. Unfortunately, this model faces 

the problem that peculiar motions of the Local Group are not correlated as if they all emerged 

from one source, perhaps the Virgo cluster (Kolb & Turner 1990). Their crossing times are also 

comparable to the Hubble time, suggesting that actually this pancake is being fried up today, by 

coincidence and out of old galaxies. 

 

The collapse of quantum fields into one of several degrees of freedom during the spontaneous 

symmetry breaking (SSB) of a phase change can produce more exotic galaxy seeds. All the tension 

of the field is locked within topological defects such as monopoles or cosmic strings, whose 

energetic wake can easily be imagined to trigger turbulent instabilities and galaxy formation in a 

network of filaments or cellular walls respectively. Present-day galaxy distributions may not even 

trace mass, but rather the passage of these topological instabilities – which makes the theory very 

flexible and accommodating to observation. Strings are the most acceptable defect (Peacock 1999), 

created during the SSB of the U(1) abelian Higgs field, and their velocity could determine the mass 

of the galaxies they seed. Unfortunately, they would presumably also be visible as linear density 
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steps in the CMBR due to a Doppler shift in front of/behind them, which are not present (Kolb 

& Turner 1990). 

 

A first generation of AGNs somehow formed before z ( 10 could also shape future structure via 

non-gravitational forces. Very early supernovae are conjectured to emit shock fronts, which 

compress the IGM and trigger a chain reaction of more explosions and galaxy formation in 

outgoing shells. Analysis of the speed of the galactic winds involved successfully predicts the 

typical galaxy-galaxy separation in the Local Supercluster (Peebles 1993) but fails to explain their 

peculiar motions. These should all be normal to the fundamental plane but turn out to be mainly 

within it. This model also fails to explain the apparently self-similar nature of the galaxy 

distribution. It is not understood (Kolb & Turner 1990) how large-scale formation could be 

orchestrated by high-) density waves without destroying the smaller and intermediate structure 

within it. 

 

Weinberg, Gott & Melott (1987) have calculated genus curves g(") for simulated density fields 

representing many different structure models, including the above (see figure 4). However, it is 

debatable to what scales these would be realistic. All the different mechanisms of galaxy formation 

are essentially stochastic and produce density fields that are Gaussian to some extent, through the 

Central Limit Theorem. For example, a network of filaments woven sufficiently tightly may be 

indistinguishable from hierarchical clustering. However, the fact that the debate is even possible 

owes itself to the projected ability of the 2dF GRS to measure the topology of large-scale 

structure with sufficient accuracy to detect any (gross) non-Gaussianity if it is present. 
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Figure 4. Genus curves of different structure models, from Weinberg, Gott & Melott 
(1987). All have an asymmetric (non-Gaussian) profile, which would suggest 
alternative underlying formation processes. Both bubbles and filaments cause a 
shift to the right, reflecting their “swiss-cheese” topology. Isolated clusters shift 
g(") to the left, as expected with a “meatball” topology. Notice also the varying 

widths of the curves. 
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3 · 4    M E T A S T A T I S T I C S  

 

In order to measure departures of the genus curve from a random-phase shape using just a few 

numbers, several “metastatistics” have been suggested by Vogeley et al. (1994) and Canavezes et 

al. (1998). Other authors use Principal Component Analysis instead. 
 

3·4·1 Shift 

A displacement *" of the genus curve left or right shows a shift towards respectively a “meatball” 

or a “swiss-cheese” topology. gobs(") is the observed genus curve and if gfit(") is the corresponding 

best fit random-phase analytic curve which minimises #2 in the range –1<"<1, then 

 

.                                                  (11) 

3·4·2 Width 

The width W over which the genus curve is positive. This reflects whether the observed density 

field is more or less sponge-like than a Gaussian random field. If "± are the zeros of the observed 

density field, 

.                                                       (12) 

3·4·3 Amplitude 

The amplitude A of the best-fitting random-phase genus curve, minimising #2 in the range –1<"<1. 

This is related to the shape of the power spectrum as described by equations (7) and (10). Note 

that this topological method of evaluating the amplitude is particularly affected by shot noise due 

to undersampling of the density field which causes the integrals in equation (8) to diverge and a 

systematic overestimation of A (see section 4·2). 

 

3·4·4 Amplitude drop 

The amplitude of the genus curve is analytically calculable only in the case of a Gaussian density 

field. In structured fields or after non-linear gravitational evolution, correlations between phases 

lower the amplitude compared to an estimate based on integration over the power spectrum 

(Canavezes et al. 1998). They define the amplitude drop 

 

,                                                          (13) 
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where ARP is the amplitude of a field with the same power spectrum but random phases. 

Canavezes et al. (1998) discuss several methods to practically achieve this Gaussianization; the 

algorithm used here simply randomises the phases of the field in Fourier space and then 

transforms back to real space. 

 

4    G E N U S  A L G O R I T H M  T E S T S  

 

Topology is the mathematics of surfaces – and a surface must first be extracted from a list of 

galaxy co-ordinates. Mecke et al. (1994) have one idea to assign a spherical shell of varying radius 

to each galaxy position and consider the union of these spheres. However, our algorithm employs 

the more widely used method of placing galaxies into a grid lattice by means of a cloud-in-cell 

routine, smoothing the field with a Gaussian window of varying FWHM rsm, and considering the 

family of isodensity contours. Adjacent cells inside the surface are then linked together and the 

number of cubes, squares, lines and points formed by these joins are counted (section 3·1) to 

calculate the genus by Poincaré’s theorem (5). A listing of the Fortran 77 code used for this is 

supplied in appendix A1. 

 

Any one individual isodensity contour has two sides and can actually be treated as giving two 

different surfaces: the incursion and the excursion surfaces. The normal to the incursion surface 

points into regions of lower density (the excursion set) and the normal to the excursion surface 

points into the incursion set. N-body simulations are carried out within periodic grids – in which 

the incursion and excursion surfaces are identical but oppositely oriented. The two values that can 

be calculated for the genus, ginc(") and gexc(") ought to be the same in a periodic grid. However, 

numerical errors are introduced by both the generation of a surface from individual galaxy co-

ordinates and by the reduction of this smooth mathematical object into discrete grid cells, which 

need not necessarily be periodic. The genus algorithm is now tested, to minimise these errors and 

to ascertain the régime in which it is a valid approximation. 
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4 · 1    F I N I T E  G R I D  C E L L  

R E S O L U T I O N  

 

The (initially smooth) density field is binned into 

a lattice of some finite grid cell size, lcell. This 

falsely clumps galaxies together and smudges out 

structure that really is present. Detail is lost on 

scales smaller than the bin size. If lcell is large, 

then the magnitude of the genus curve is 

systematically underestimated: see figure (5). 

This deviation asymptotically disappears as more 

grid cells are used and the individual cell size 

becomes much smaller than the smoothing 

length, rsm. A practical upper limit has been set on 

lcell, at least for random fields. 

 

Furthermore, using grid cells of comparable size to the smoothing length removes the degeneracy 

between ginc(") and gexc("). Adjacent cells are not well correlated and individual concentrations of 

galaxies can create a pockmarked or corrugated field. ginc(") and gexc(") differ slightly and artefacts 

appear in the genus curve (Springel et al. 1998) when only diagonally adjacent grid cells delineate 

the isodensity contour. Figure 6 shows an example. 
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Figure 6. Example of the failure of the genus algorithm to calculate a 

consistent value for g(") because of the discrete nature and finite 

size of grid cells. Genus is calculated using equation (5). 
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To keep this method in an acceptable régime requires a trade-off between the size of the grid cells 

and the smoothing length. Using more, smaller grid cells costs processing time. At larger rsm, 

coherence over several grid cells reduces the number of adjacent diagonals that cause this effect, 

but (as well as quantifying the structure at a totally different smoothing length) also reduces the 

amount of independent data. Figure 7 shows genus curves calculated from six iterations of 

4 million points distributed randomly in a 1283 grid and smoothed with increasing rsm/lcell. This 

field is Gaussian at all scale lengths so g(") ought to fit a random-phase analytic curve. 

 

The genus curves from the incursion and excursion surfaces are seen to quickly converge to the 

same value. To reduce processing time these curves were created by holding lcell constant and 

increasing rsm, so for large rsm there are fewer independent data sets within the cube and larger 

random errors. Although they tend to the same curve, this is therefore not exactly the random-

phase analytic curve for large rsm. As expected, this trend continues to higher rsm/lcell and lessens 

with a larger ensemble of data sets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Resolution limit of smoothing length. Error is shown by a hatched area 
around each curve. Residuals from the best fitting random-phase curve 
are plotted on an expanded (2x) scale underneath, offset for clarity: 

finite grid cell effects break the degeneracy between ginc(") and gexc(") for 

small rsm/lcell. Calculated in a fixed 128
3
 grid with increasing rsm. 
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To combat the resolution limit demands a larger rsm/lcell than that to ensure no underestimation of 

the magnitude of the genus, so this alone governs the régime of validity for the algorithm. A 

quantitative expression for the fractional error e in each curve can be obtained by calculating the 

rms of the residuals compared to the maximum of the best-fit Gaussian curve. This is shown in 

figure 8. 

 

 

 

 

 

 

 

 

 
Figure 8. Fractional error due to finite grid cell size. Plot (a ) includes a 

contribution due to the finite size of the sample, which decreases as 
expected in the averaging of six cubes. This volume effect has then been 
fitted and removed in quadrature from plot (b). 

 

Springel et al. (1998) adopt a minimum value of rsm/lcell + 2; Weinberg, Gott & Melott (1987) 

require rsm/lcell + 2·5. Clearly this is open to interpretation but of the right order. To keep the 

contribution to error on the genus curve due to finite grid cell size below 1%, all further 

calculations will have  

 

(14) 

 

 

4 · 2    M E A N  G A L A X Y  D E N S I T Y  

 

Smoothing a density field alters its power spectrum by introducing a short-wavelength cut-off. 

Convolved with the window function (9), a power spectrum P(k) ' kn  ,  kn exp{-k2rsm
2/4}. 

Smoothing lengths much shorter than the typical galaxy-galaxy separation leave the field 

corrugated around individual galaxies and the magnitude of the genus curve overestimated, as 

discussed in section 3·2. Since we are generally keeping rsm - 4 h-1 Mpc or larger, the problem is 
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equivalently one of ensuring that the mean galaxy density <N> is sufficiently high that there are 

always several galaxies per smoothing volume. A sparsely sampled distribution also affects the 

genus curve in a similar but slightly different manner. As individual galaxy sites are removed, 

clusters fragment and filaments break up. The isodensity contours separate around new isolated 

structures and the genus becomes systematically more negative for all densities. The central peak 

of the genus curve is simultaneously lowered and narrowed by the precise way that ginc(") and 

gexc(") diverge. Under certain conditions, it can even become a double peak as ginc(") shifts slightly 

to the right and gexc(") moves left. This is seen for some smoothing lengths in figure 17. 

 

To accomplish a similar analysis to that in section 4·1, an increasing number of points are 

randomly distributed in a 1283 grid and smoothed at rsm/lcell = 4·5. Fractional errors compared to 

the maximum genus at " = 0are shown in figure 9. 

 

 

 

 

 

 

 

 

 
Figure 9. Fractional error due to sparse sampling of galaxy points.  Plot (a) 

includes a contribution due to the finite volume of the sample, which has 
then been fitted and removed in quadrature from plot (b). Calculated by 
gradually increasing <N> inside a fixed grid. 

 

To keep the contribution to fractional error from sparse sampling below 1%, we find a 

requirement similar to those of Weinberg, Gott & Melott (1987) <N>rsm
3 + .3/2 = 5·6 and Springel 

et al. (1998) <N>rsm
3 + 9·7 

 

(15) 

 

This analysis is valid for a white noise power spectrum Poisson random distribution of galaxy 

sites. The clustering of galaxies in the 2dF sample may make it reasonable to use smaller rsm within 

the tightly packed and over-dense rich clusters. However, problems occur around very low galaxy 
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densities in the voids. The algorithm often has difficulty and error bars tend to be large near the 

under-density minimum at " ( -/3 (see figure 17). Ideally perhaps, an adaptive smoothing 

algorithm would be designed. However, this has the two disadvantages that adaptive smoothing 

techniques break the independence of the genus with respect to bias (Springel et al. 1998) and also 

that there is then no analogue of the analytic random-phase genus curve. An analysis of the effect 

of resampling in clustered density fields has been attempted but proves difficult. Without an 

analytic genus curve there is no ‘correct’ answer to judge which specific effect is causing an error. 

Furthermore, there are not as many independent points in the catalogue as there are in a Poisson 

random field. Seen from large scales, clusters are now the basic building blocks, each containing 

about <N>" � (r)d3r - 10 individual galaxies. It no longer matters when one or two of these 

galaxies are randomly removed or shuffled around for bootstrapping: they are still in the same 

place. Conversely, filaments and sheets consisting of only a few galaxies are very sensitive to 

changes or missing data points. These easily disintegrate under bootstrapping and the whole 

interconnected topology breaks down.  

 

The analysis of clustered density fields will use as much data as possible but with a continuing 

eye to condition (15) and on guard for the kind of global skewing of the genus curve produced by 

sparse sampling of galaxy points. 

 

 

4 · 3    N O N - P E R I O D I C  G R I D  

 

While remembering the requirements (14) and (15) on grid size and smoothing length, we now 

drop the periodic boundary conditions. Real data from the 2dF GRS will not wrap around forever 

in a cubic block, but lie within an (unwieldy) wedge of R.A. and Dec. with a selection function to 

further complicate the boundary in redshift space. Edge effects are produced in a way that is 

difficult to predict analytically. In order to be able to compare 2dF data with theory, it is 

necessary to discard data from unwanted regions of the n-body simulations and imitate these 

arbitrary boundary conditions. 

 

To achieve this, a mask is produced of the survey region, with a value of unity inside and zero 

outside. When comparing different theoretical models, this region can simply be one base cube in 
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the n-body simulations; when the 2dF survey data is introduced this will be the ‘unwieldy’ 

wedge5. Galaxy density data exists inside the mask – then is set to zero in a region of padding 

around it. Both the density field and the mask are smoothed into this zero padding and the 

density field is then divided by the mask. This is an attempt to compensate for the distortion of 

data by averaging with zero padding. However, as densities consequently tend to the mean, voids 

are closed up and clusters smeared away. Some of the data near the edges of the survey is 

unreliable and must be thrown away. However, this is obviously not ideal as it lowers the number 

of independent data points in the survey volume and increases the random errors. There is a trade-

off between how much data is discarded and how much systematic error it would introduce, were 

it left in. This trade-off has been given the usual analysis in figure 10. 

 

 

 

 

 

 

 

 

Figure 10. Fractional error due to edge effects when a 
non-periodic galaxy density field is smoothed 

into zero padding. 

 

Weinberg, Gott & Melott (1987), working with a slightly different algorithm and the Point Source 

Catalogue redshift (PSCz) survey, concluded that it was best to ignore data within 1/3 rsm of the 

edge of the survey region after smoothing. With the much larger 2dF survey, a slightly more 

conservative estimate allows a significant reduction in error 

 

(16) 

 

This corresponds to the point at which the smoothed mask falls to 80% of its maximum value. 

 

                                                

5
 The mask may also have holes around nearby bright stars (see section 4� 5). In redshift space, the survey is 

truncated into a volume-limited sample extending to the distance at which <N> falls below a useful value for 
criterion (15). 
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4 · 4    B O U N D A R Y  C O R R E C T I O N S  

 

As well as corrupting nearby data, inserting a survey boundary breaks even the approximate 

symmetry between the genus calculated from the incursion and excursion surfaces seen in a 

periodic grid. Differences between the two arise when the density contour intersects a boundary 

of the survey region (Coles, Davies & Pearson 1996). For example, a region of high density that 

wraps from one side of the survey to another is cut in half when periodicity is removed. It now 

appears as two separate regions in the excursion set, lowering the genus by one. Meanwhile, the 

incursion set has just suffered two small indents into an otherwise contiguous region: a 

homeomorphism, which leaves the genus unchanged. The reason for this disparity is hidden in our 

definition of the genus. 

 

The universe is a continuous medium that extends beyond the boundaries of the survey. The 

Euler-Poincaré characteristic #E(") of the Gauss-Bonnet theorem (1) has previously been 

calculated in a boxed-off region, from surfaces which have been artificially closed up if they extend 

beyond the arbitrary 2dF GRS boundary. This is an unreasonable thing to do. Galaxies certainly 

exist outside the survey region: and so should the isodensity contours. The only hint of 

information about the behaviour of the large-scale structure just beyond the boundary of the 

survey is given by the angle 0 at which the isosurfaces approach it – and this information should 

not be ignored. Figure 11 shows two contours that would be artificially capped off by a (cubic) 

survey boundary to give the same #E(") = 4. but are probably edges of larger surfaces with 

completely different topologies. 

 

 

 

 

 

 

 

 

Figure 11. Data is only known within the survey region but galaxies and isodensity 
contours also exist outside (dotted lines). The boundary corrections in 
the Gauss-Bonnet theorem destroy any knowledge of this by capping off 
equally all surfaces which intersect the boundary of the survey region. A 
cubic survey boundary is illustrated. 
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What is really needed is not #E("), but the integrated Gaussian curvature % over the isodensity 

surfaces. This is the first term on the LHS of the Gauss-Bonnet theorem (1). The other two terms 

are integrated boundary corrections. To recover the statistic of real interest in a 2D topology, 

Davis & Coles (1993) found it necessary to use a complicated and arbitrary weighted averaging of 

ginc(") and gexc("). In 3D, it turns out that the deviation of each of these from the periodic 

prediction is equal and opposite6 and a simple average gives almost exactly the value which would 

obtained in the absence of boundaries. ‘Almost’ because on a point-by-point basis, there will still 

be some slight scatter about the mean (given by the convolution of a cosine and a normal 

probability curve, as explained below) due to the binning of the surface into finite grid cells. 

However, over a sufficiently large sample, the total boundary correction tends to zero. This is a 

fine example of the beauty of Poincaré’s theorem (5). 

 

To show all this, consider the two boundary correction terms in the Gauss-Bonnet theorem (1). If 

the incursion/excursion surface intersects the boundary of the survey region (the cube in figure 11) 

in n smooth or regular7 closed curves 1 i(� )  (i=1…n) parametrised by arclength �  then 

 

,              (17) 

 

because the curvature at the exterior angles of a cube are compressed into 2-functions at the eight 

vertices (Canavezes et al. 1998). Depending on the density ", some of these vertices will be 

included in the excursion set, others in the incursion set. A statistical average suggests that the 

contribution to ginc(") from the vertex terms (for any shaped boundary) is typically 

 

(18) 

 

and the remaining vertices contribute to gexc(") 

 

.                                        (19) 

 

                                                

6
 It is in fact equal to the 2D genus of the survey boundary from e.g. Davis & Coles (1993), Colley et al. (1999). 

7
 A parametrised and differentiable curve 1(� ):I� !
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These are not equal and opposite but are only a negligible contribution to the genus, compared to 

that from the integrated curvature. When ginc(") and gexc(") are combined (see later) this correction 

will add 1 to the overall genus. Kerscher et al. (1997) explicitly keep this term in their analysis 

because it corresponds to one of the other Minkowski functionals. However, it can be ignored for 

a similar reason as for the irrelevant 1 in the non-standard definition of genus (3). It does not alter 

the overall shape of the curve and it is swamped by a typical genus of several thousand. 

 

Now consider the curve 1(� ) which lies on the boundary of the survey region. Its geodesic 

curvature will be shown to create the dominant correction to the genus. 1(� ) has a tangent vector 

 

,                                                (20) 

 

which is automatically of unit length when 1(� ) is parametrised by arclength. It has normal and 

binormal vectors (see figure 12) defined by the Serret-Frenet formulae 

 

,                               (21) 

 

where %1(� ) is the extrinsic curvature (seen from the point of view of the embedding space !3). %1 

is equal to 1/reff, the radius of a circle tangential to 1(� ) and with the same curvature at the point 

of intersection. The (b1,t1) plane is called the rectifying plane (see figure 12). For a curve on a flat 

boundary like the cube in figure 11, this simply intersects the boundary at right angles. However, 

1(� ) lies not only on the survey boundary, but also on the incursion/excursion surfaces. In a         

co-ordinate basis tied to the surface, 1(� ) can be reclassified to have components of curvature %n 

along the unit normal N to the surface and some extra bending around %geo within the surface8 . 
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8
 A geodesic has %geo = 0. 
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Figure 12. The rectifying planes of # (� ) are at right angles to the survey 

boundary but at an arbitrary angle $(� ) to the incursion/excursion 

surface. It is this angle which has to be added on to cap off the 
surfaces and this which is the crucial angle to be removed from the 
estimation of the genus. 

 

These are defined as 

 

.                                (22) 

Dotting this with N6t1 gives an expression for geodesic curvature 

(23) 

 

but since all of these vectors are of unit length, this reduces to 

 

,                                          (24) 

 

where 0(� )  is the angle between the rectifying plane and the incursion surface. 1(� ) can be 

reparametrised by �  5 [0,2.). Then, with a Jacobian reff(� ) from the change of integration variable 

 

 

 

.                                     (25) 

For the excursion surface, 0(� ) �  . - 0(� ) 

 

 

 

.                                          (26) 
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The separate corrections from ginc(") and gexc(") are equal and opposite, so can be removed by 

averaging the two values. This is true for any density field: Gaussian or otherwise, and in any 

shaped boundary. The way forward is open to calculate the ‘true’ genus, which would have been 

obtained in the absence of boundaries. As an interesting aside (and to verify that this approach is 

working), these boundary correction terms or residues from the ‘true’ genus can be calculated in 

the limit of large n. 

.                                           (27) 

 

0 will scatter around either 0 or ., depending on the predominant orientation of the 

incursion/excursion surface at that density. n is proportional to the surface area of this density 

contour and therefore proportional to the derivative of Vinc/exc, which is just a normal distribution 

curve. Kerscher et al. (1997) explicitly use the other three Minkowski functionals as a boundary 

correction to #E. A simple estimate recovers their result by just assuming that the typical length 

of the intersections between the isodensity contour and the survey boundary is scale-invariant 

(which is certainly true in the case of white noise power spectrum Poisson random field). 

Residues are then 

 

.                              (28) 

This prediction has been plotted in figure 13. Its magnitude could be calculated rigorously or could 

even be fitted from the data in figure 9 but is unimportant and has just been scaled here to 

minimise #2. The prediction fits the sample data very successfully. 

 

 

 

 

 

 

 

Figure 13. Residuals of ginc(") and gexc(") from their mean (assumed to be the 

‘true’ genus). Errors are hatched regions around each curve. Data is 
from a mock 2dF catalogue smoothed at 8h

-1
 Mpc, and satisfying the 

constraints (14), (15) and (16) so that the main source of residual is 
due to the boundary correction terms. The dotted line is the prediction 
for this in equation (28), scaled to minimise %

2
.  
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4 · 5    G A L A X Y  S E L E C T I O N  

 

The observed galaxy sample will be a Poisson realisation of the underlying true galaxy 

distribution. The error in the final catalogue due to incomplete sampling by the selection function 

or because of near neighbours9 can be estimated via bootstrapping. The 250,000 galaxies observed 

by 2dF are replaced at random on any of the sites in the catalogue, resulting in more than one at 

some sites and none at others. The variance of g(") from these bootstrapped catalogues describes 

the rigidity of the algorithm and of the data set. There are also holes of missing data around bright 

stars in the APM catalogue, which the 2dF GRS sources for galaxy positions. For small holes, 

data could be interpolated across the gap when the field is smoothed and divided by the value of 

the mask. For larger holes, subtracting the genus of the mask from the genus of the survey data 

gives the required result. This just adds more boundaries and boundary corrections. 

 

Cosmic variance can then be emulated by extracting mock catalogues from several independent 

realisations of the n-body simulations. It is worth noting that the analysis will be performed upon 

volume-limited mock catalogues. Pushing the limits to larger volumes reduces cosmic variance but 

tends to select only the very luminous galaxies, which may well be intrinsically more clustered 

than a complete selection. This is discussed further in section 5·2. 

                                                

9
 2dF cannot measure spectra of galaxy pairs closer than 11·4” because of difficulties packing fibres into the focal 

plane. 
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5    M O C K  2 d F  C A T A L O G U E S  

 

A collection of mock catalogues has been obtained via n-body simulations of a flat � CDM 

universe by Cole et al. (1998). These catalogues have been extracted with a ‘biasing’ algorithm 

(29), from each of ten independent evolutions of dark matter in an adaptive particle mesh. 

 

(29) 

 

Model parameters have been normalised such that the simulated population reproduces the 

observed abundance of rich galaxy clusters and the amplitude and slope of the correlation function 

on scales of ~1-10 h-1 Mpc. The catalogues are available in periodic 345·6 h-1 Mpc cubes, with 

1283 galaxies giving a mean galaxy density of <N> = 5610-2 h3 Mpc-3. Volume-limited sub-samples 

have then been extracted from these, in wedges that simulate the geometry and selection function 

of the southern (SGP) region of the 2dF survey. To maintain a cosmic significance with structures 

up to ~50 h-1 Mpc across, these mock catalogues have been prepared to a redshift of z = 0·1 

which gives only <N> = 1·5 610-2 h3 Mpc-3. This is not really enough and it would be interesting 

to repeat the analysis to a more densely packed z ( 0·05. However, there must be some effort to 

overcome the fundamental flaw with the CfA redshift survey (for topology), that large-scale 

structures are of the same approximate size as the survey itself. Either way, there will be 

systematic errors: at least with a large but sparsely populated survey, these errors are generally 

understood and new parts of the universe can be investigated. A snapshot from the simulations at 

a fixed time is deemed satisfactorily realistic for these small redshifts – i.e. no lookback time is 

included. Furthermore, analysis 

is performed in real space, 

without the added random 

confusion of peculiar velocities 

in redshift space. 
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Figure 14. Example &CDM redshift slice from Cole et al. 

(1998). This shows a magnitude limited catalogue 
with galaxies in redshift space and out to z =  0·3, 
so is for illustration purposes only. 
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5 · 1    P E R I O D I C  C U B E S  

 

Figure 15 shows the mean of genus curves calculated from ten independent realisations of the 

7CDM model in the n-body simulations described above. Standard error bars between the ten are 

plotted; plus a contribution from numerical errors, which have been estimated using the analyses 

of section 4. However, the error bars are of the same size as the (solid) circles used to plot the 

data and therefore not usually visible. This is no surprise because the grids have been arranged to 

automatically satisfy criteria (14) and (15)10 and have no boundaries. In such a large combined 

survey volume, the other source of scatter is also negligible: cosmic variance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Genus curves per unit volume from an ensemble of 10 mock 2dF 
catalogues each in a periodic cube of side length 345·6 h

-1
 Mpc. Solid 

circles show the mock 2dF data; open circles the same data after 
Gaussianization. The dotted line is a fit to the latter. Error bars are 
shown but are very small: as expected in such a large & periodic grid. 

                                                

10
 Not quite for rsm= 4 h

-1
 Mpc. This has been taken into account with bigger error bars. 
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Figure 15 also shows (open circles) genus curves of corresponding Gaussianized density fields, 

created by randomising the phases of its Fourier components. As expected, these follow almost 

exactly the analytic curve (dotted line) given by equation (6). Random-phase fits to both data 

sets, which minimise #2, are used in the calculation of the metastatistics previously introduced in 

section 3·4. Summaries of the metastatistics are shown in figure 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Metastatistics (see section 3·4) for the mock 2dF genus curves in 
periodic grids. Error bars are standard errors between the ten 
catalogues, plus an estimate of systematic numerical inaccuracies from 
the analyses in section 4. 

 

The mock 2dF data show an apparent trend towards Gaussianity on larger scales. The amplitude 

of the genus curve steadily approaches that of the random-phase curve and the asymmetry seen 

very strongly for rsm ~6-8 h-1 Mpc begins to even out by rsm =12 h-1 Mpc. This agrees with other 

published data, e.g. Canavezes et al. (1998). Any unusual width of the curve or coherent shift 

towards either a “meatball” or “swiss-cheese” topology is very slight and also disappears on 

longer scale lengths.  

 

On short scales, the density fluctuations are clearly non-Gaussian – with a topology that a 

comparison with figure 4 demonstrates to be slightly filamentary. This is due to non-linear 
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gravitational evolution and rapid accretion onto (rich clusters of) galaxies forming around over-

densities. However, the immediately interesting information for cosmology comes from the less 

dramatic non-Gaussian behaviour on very large scales. If this can be measured with sufficient 

accuracy, it may be useful for constraining cosmological models and parameters. 

 

5 · 2    2 d F  S O U T H  G A L A C T I C  P O L E  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Genus curves from an ensemble of 10 mock volume-limited 2dF SGP 
catalogues prepared to z = 0·1. Hatched areas show standard error 
between the catalogues, combined in quadrature with estimates of 
numerical errors from the analyses in section 4. Note the systematic 
differences between this measurement and that taken in periodic grids 
(solid circles), mainly due to a low galaxy density in the volume-limited 
catalogues. 
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in wedges mimicking the southern region (SGP) of the galaxy redshift survey out to z = 0·1. To 

recap, the errors particularly dominant in this data will be due to sparse sampling of galaxy 

positions. The volume of the survey is large; binning it into grid cells sufficiently fine to minimise 

numerical errors is simply a matter of computer processing time. For smoothing lengths above 6 

h-1 Mpc, a 2886966288 grid was perfectly adequate for the ~36061206360 h-3 Mpc3 box needed 

to contain the 26106 h3 Mpc-3 survey region. Below that, a 43261446432 grid was required. 

Numerical-type errors from criteria (14) and (16) are therefore easy to control11. Along with an 

estimate of error due to low galaxy density (from figure 9), these are plotted as hatched areas in 

figure 17. However, sparse sampling produces systematic, not random, errors. The final genus 

curves measured from a mock SGP region differ significantly from those previously calculated 

with the same catalogues in a periodic and completely sampled cube – which, for this purpose, are 

assumed to be correct. Gaussianized genus curves used for the metastatistics (figure 18) have 

again been calculated from results in a periodic cube. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 18. Metastatistics (see section 3·4) for genus curves of the mock 2dF SGP 

fields (illustrated in figure 14). Error bars are standard errors 
between the ten catalogues, plus an estimate of systematic numerical 
inaccuracies from the analyses in section 4. 

                                                

11
 The curve for rsm= 4 h

-1
 Mpc shows peculiar artefacts which bring to mind those due to an overly coarse binning of 

the density field described in section 4� 1. Perhaps requirement (14) should also be tightened for a clustered density 
field. 
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The systematic differences due to sparse sampling are most pronounced in the width and height 

of g("), as discussed in section 4·2. Clusters of galaxies are little affected by one or two missing 

(unobserved) galaxies. However, the filaments or sheets joining them are often tenuous and poorly 

defined, and galaxies removed from these can easily break up the whole interconnected topology 

of the distribution. Only for a limited range of " does an overall “swiss-cheese” topology survive 

intact. For most densities, the genus suddenly drops as isocontours fragment into separate regions 

around individual clusters. Under-dense voids fare even worse and the minimum at " ( -/3 is 

exaggerated because extremely isolated galaxies almost never connect to their neighbours. This 

corrugation or pock-marking of the density field is particularly evident (in figure 17) for 

smoothing lengths above ~9 h-1 Mpc. The particular shape of the periodic genus curve means that 

this SGP exaggeration happens to mimic Gaussianity; which does question which of the two 

measurements is truly correct. Low galaxy densities ought to be a problem instead at short 

smoothing lengths. However, given the size of other errors in the SGP genus curves, a reliance 

upon the periodic results is probably safe. 

There have clearly been some difficulties making the SGP measurements, seemingly due to an 

insufficient galaxy density. This has tended to make the central peak of the genus curve lower and 

narrower than it was in the fully sampled mock catalogues; which in turn deteriorates the 

measurement of shift. Qualitatively, however, the algorithm has coped well with a complicated 

geometry and inevitably sparse sampling. These simulated results are rather narrow but otherwise 

consistent with PSCz observations from Canavezes et al. (1998) and the 1·2 Jy IRAS survey 

from Protogeros & Weinberg (1997). This method will still be useful so long as that when results 

are used to constrain cosmologies, they are compared against predictions from similarly degraded 

simulations. 

 

An alternative approach would be to use magnitude-limited sub-samples (or the whole survey). 

This quickly and easily raises the galaxy density for most regions of the survey. The redshift 

selection function would be reflected in a value of the mask decreasing from unity: which would 

also introduce a volume limit at 80% of <N> at z = 0 from criterion (16). The problem is that 

more distant galaxies are biased more luminous because of selection effects: only the brightest 

galaxies make it into a magnitude-limited catalogue. These typically form through mergers, which 

have triggered starbursts and built AGNs (Sanders & Mirabel 1996). Bright galaxies are therefore 
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more likely to be found in very dense rich clusters and their distribution would perhaps be 

clumpier. Different, anyway. Although simple (linear) biasing does not affect the genus statistic, 

this selection mechanism by luminosity is not fully understood: particularly since it may involve 

galaxy mergers and anti-biasing. An investigation to determine it would also tie in nicely with the 

goal of 2dF to compare the clustering of galaxies as a function of spectral type. 

 

It would finally be productive to repeat the analysis with mock catalogues to only z ( 0·05 and 

compare these results to CfA data. The 2dF GRS surveys to a fainter magnitude, is more 

complete and is therefore more accurate. Analysis of how well the CfA redshift survey did, 

compared to modern 2dF results, can be taken as an indication of how well 2dF data will fare 

when pushed to its own limits of large volume-limited sub-samples. I suspect that this will warn 

of large systematic errors in previous analyses. Certainly, results from CfA vary greatly between 

the Northern and Southern hemispheres (Vogeley et al. 1994), due to large error bars and cosmic 

variance. Just the 2dF data from nearby could also be compared to the 1·2 Jy IRAS (IR-selected) 

survey. Infrared radiation is probably a better tracer of mass than optical light and may give 

results more consistent with        n-body simulations of dark matter. As mentioned, 2dF galaxy 

clustering is already being examined as a function of colour. However, since all 2dF coordinates are 

taken from the (optical) APM survey, it would be interesting to compare the results from 

differently selected galaxy catalogues. 
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 6    C O N C L U S I O N S  

 

A Fortran algorithm has been developed and tested for the calculation of the topological ‘genus’ 

statistic or interconnectivity of the galaxy distribution in large-scale structure. The topology of a 

density field is dependent upon the phases of its Fourier transform and hence a useful way to 

investigate structure, complementary to the power spectrum, which is determined by their 

amplitudes. The algorithm has been applied to mock catalogues of the 2dF galaxy redshift survey, 

which is currently mapping out galaxies in a region of sky around each galactic pole. These regions 

should be large enough to provide useful constraints on cosmologies, which have not been 

possible before from redshift surveys only the same size as the structure being investigated. 

However, this work has not yet attempted to quantify these constraints. 

 

The genus as a function of density is known analytically for a Gaussian (random-phase) 

distribution, which is favoured by the standard cosmological model. Artificially Gaussianized 

fields have been manufactured to isolate and then control the typical sources of errors in real 

galaxy density fields. Several conditions have been imposed on the computing algorithm in order 

to keep the point-wise contribution from each source below 1% of the maximum genus. These 

include a sufficiently fine grid mesh to store the galaxy densities; a constraint on the treatment of 

data near boundaries; and  a minimum galaxy density when a volume-limited sub-sample is 

extracted from the overall catalogue. 

 

,                                                        (14) 

,                                                       (15) 

(16) 

 

Measurements of genus curves have been presented from mock catalogues in periodic cubes and in 

wedges that mimic the geometry and selection function of the Southern region of the 2dF GRS. 

Both were extracted via a simple biasing algorithm from n-body simulations of a flat � CDM 

model. Results show a strongly non-Gaussian clustering at short scales due to non-linear 

gravitational evolution and accretion onto over-densities. On scales larger than ~10 h-1 Mpc, the 

fields tend to an almost Gaussian behaviour but measurements suffer from a sparse sampling of 

the galaxy population which fragments the distribution and lowers the genus curve. Even when 
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satisfying the computational constraints, a possible detection of deviations from Gaussianity 

using the 2dF GRS will be subject to ~6% random errors and large systematic errors. Any 

comparisons with theoretical data would need to be performed on a similarly degraded theoretical 

population. The obvious next step is to use these results to constrain cosmological models and 

parameters, and see how much these systematic errors matter. 

The topological results for the simulated galaxy catalogues are largely consistent with previously 

published work. When the 2dF GRS is finally complete, it will also be productive to compare this 

large data set with earlier, well-studied observational data such as the CfA redshift survey or 

particularly the IRAS 1·2 Jy catalogue. This is IR-selected and may arguably trace the distribution 

of dark matter more faithfully than the optically selected 2dF data. 
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      program genus 

c     Calculates the genus statistic of a pre-smoothed density field 

c     using the method of Coles et al. (1996), MNRAS, 281, 1375. 

c     By Andrew Benson (March 1999) & Richard Massey (February 2000). 

c 

      implicit none 

      integer NNUMAX                               ! # of x positions on genus curve 

      parameter (NNUMAX=100)                       !  

      real genus(NNUMAX,2)                         ! genus statistic (inc/exc) 

      integer inu,nnu                              ! counters 

      real nu,numin,numax,nustep                   ! density 

      integer NGRID,XPAR,YPAR,ZPAR                 ! size of density and mask grids 

      parameter (NGRID=144,XPAR=3,YPAR=1,ZPAR=3)   !  

      real grid(NGRID*XPAR,NGRID*YPAR,NGRID*ZPAR)  ! density field data 

      real mgrid(NGRID*XPAR,NGRID*YPAR,NGRID*ZPAR) ! mask data 

      integer densidx(XPAR*YPAR*ZPAR*NGRID**3)     ! index for sorting density field 

      integer ngx,ngy,ngz,mngx,mngy,mngz           ! coordinates in grids 

      real xmin,xmax,ymin,ymax,zmin,zmax           ! dimensions of grids 

      real mxmin,mxmax,mymin,mymax,mzmin,mzmax     !     “ 

      real lx,ly,lz,vol                            !     “ 

      integer inside                               !     “               # of cells 

      integer iargc                                ! # of arguments on command line 

      integer i,ix,iy,iz,j,jx,jy,jz                ! counters 

      integer genuscalc                            ! function to calculate genus 

      real cutoff                                  ! proximity edge/non-periodic data 

      real rs,mrs                                  ! smoothing lengths 

      real biggest,mean,var,erf                    ! temporary stores for statistics 

      character outfile*100,mfile*100,infile*100   ! filenames 

c 

      if (iargc().ne.7) then 

        write (0,*) 'USAGE: genus.exe infile maskfile outfile numin numax nnu cutoff' 

        stop 

      endif 

      write (0,*) 'GENUS.EXE initialised for a',NGRID*XPAR,'  x',NGRID*YPAR, 

'  x',NGRID*ZPAR,' grid' 

c 

c  READ IN ARGUMENTS: 

c 

      call getstr(1,infile) 

      call getstr(2,mfile) 

      call getstr(3,outfile) 

      call getreal(4,numin) 

      call getreal(5,numax) 

      call getint(6,nnu) 

      call getreal(7,cutoff) 

      if ((int(float(nnu)/10.)*10).eq.nnu) nnu=nnu+1 

      if (nnu.gt.nnumax) stop 'nnu out of range' 

      if (cutoff.lt.0..or.cutoff.gt.1.) stop 'cutoff out of range' 

c 

c  READ IN GALAXY DATA: 

c 

      write (0,*) 'READING GALAXY DATA' 

      open(unit=13,file=infile,status='old',form='unformatted') 

      read (13) ngx,ngy,ngz 

      read (13) rs 

      read (13) xmin,xmax,ymin,ymax,zmin,zmax 

      if(ngx.ne.ngrid*xpar.or.ngy.ne.ngrid*ypar.or.ngz.ne.ngrid*zpar) then  

        write (0,*) 'Mismatch: Data requires a  ',ngx,'  x',ngy,'  x',ngz,' grid' 

        close(13)       

        stop 

      endif 

      read (13) (((grid(ix,iy,iz),ix=1,ngx) ,iy=1,ngy) ,iz=1,ngz) 

      close(13) 

      lx=xmax-xmin 

      ly=ymax-ymin 

      lz=zmax-zmin 

      vol=lx*ly*lz/float(ngx*ngy*ngz) 

      write (0,*) 'Smoothing length      =',rs,' Mpc/h' 

      write (0,*) 'Grid size             =',lx,'  x',ly,'  x',lz,' Mpc/h' 

      write (0,*) 'Volume per grid cell  =',vol,' (Mpc/h)^3' 

c 

c INITIALISE OBSERVED SKY MASK: 

c 

      write (0,*) 'READING MASK DATA' 

      open(unit=12,file=mfile,status='old',form='unformatted') 

      read (12) mngx,mngy,mngz 

      read (12) mrs 

      read (12) mxmin,mxmax,mymin,mymax,mzmin,mzmax 

      if(mngx.ne.ngx.or.mngy.ne.ngy.or.mngz.ne.ngz) then 

        write (0,*)  

        write (0,*) 'WARNING: data and mask grid size mismatch' 

        write (0,*) 'Data in a  ',ngx,'  x',ngy,'  x',ngz,' grid' 

        write (0,*) 'Mask in a  ',mngx,'  x',mngy,'  x',mngz,' grid' 

        write (0,*)  

        close(12)       

        stop 

      endif 

      read (12) (((mgrid(ix,iy,iz),ix=1,mngx) ,iy=1,mngy) ,iz=1,mngz)  

      close(12) 

      write (0,*)  mxmax-mxmin,'=?=',xmax-xmin 

      write (0,*)  mymax-mymin,'=?=',ymax-ymin 

      write (0,*)  mzmax-mzmin,'=?=',zmax-zmin 

      write (0,*) 'Mask smoothing length =',mrs,' Mpc/h' 

c     Renormalise mask to unity 

      biggest=0. 

      do ix=1,mngx 

        do iy=1,mngy 

          do iz=1,mngz 

            if(mgrid(ix,iy,iz).gt.biggest) then 

              biggest=mgrid(ix,iy,iz) 

              jx=ix 

              jy=iy 

              jz=iz 

            endif 

          enddo 

        enddo 

      enddo 

c     write (0,*) 'Biggest value in mask is ',biggest,' at (',jx,',',jy,',',jz,').' 

c     Find average nearby then rescale by this amount. 

      mean=0. 

      var=0. 

      do ix=-xpar+1,xpar 

        do iy=-ypar+1,ypar 

          do iz=-zpar+1,zpar 

c           write (0,*) mgrid(jx+ix,jy+iy,jz+iz)  

            mean=mean+mgrid(jx+ix,jy+iy,jz+iz) 

            var=var+mgrid(jx+ix,jy+iy,jz+iz)**2. 

          enddo 



        enddo 

      enddo 

      mean=mean/float(xpar*ypar*zpar)/8 

      var=var/float(xpar*ypar*zpar)/8 

      if (var.gt.mean**2) then 

        write (0,*) 'Taking mask height as =',mean,'   +/-', 

sqrt(var-mean**2.)/float(xpar*ypar*zpar) 

      else 

        write (0,*) 'Taking mask height as =',mean 

      endif 

      inside=0 

      do ix=1,mngx 

        do iy=1,mngy 

          do iz=1,mngz 

            mgrid(ix,iy,iz)=mgrid(ix,iy,iz)/mean 

            if(mgrid(ix,iy,iz).ge.cutoff) then 

c             Compensate for edge effects by multiplying densites by 1/mask 

              grid(ix,iy,iz)=grid(ix,iy,iz)/mgrid(ix,iy,iz) 

              inside=inside+1 

            else 

              grid(ix,iy,iz)=1.e30 

c             This is then sorted to the end of the index in a moment 

            endif 

          enddo 

        enddo 

      enddo 

      write (0,*) 'Mask occupies ',inside,' =  ',nint((float(inside))**(1./3.)), 

'^3 grid cells' 

      write (0,*) '                      =',inside*vol,' (Mpc/h)^3' 

      write (0,*) 'Genus of mask is      =  ', 

genuscalc(cutoff,ngx,ngy,ngz,mgrid,mgrid,cutoff)  

c     Surface area (of mask?) and other Minkowski functionals? 

c 

c  CALCULATE GENUS: 

c 

c     First sort the density field to find increments of nu 

      write (0,*) 'Sorting density field' 

      call indexxx(ngx*ngy*ngz,grid,densidx) 

      write (0,*) 'CALCULATING GENUS CURVES' 

      nustep=(numax-numin)/float(nnu-1) 

      do j=1,2 

        if(j.eq.1) write (0,*) 'Excursion set' 

        if(j.eq.2) write (0,*) 'Incursion set' 

        do inu=1,nnu 

          nu=numin+float(inu-1)*nustep 

c         Find the value of nu defined by volume equivalent to nu defined by variance 

          i=int(0.5*(1.+erf(nu/sqrt(2.)))*float(inside)) 

          call lookup(i,ngx,ngy,ngz,densidx,jx,jy,jz) 

          nu=grid(jx,jy,jz) 

          genus(inu,j)=float(genuscalc(nu,ngx,ngy,ngz,mgrid,grid,cutoff))/inside/vol 

c         write (0,*) inu,nu,' (',i,')',genus(inu,j) 

        enddo 

c       Swap signs within density field to find incursion set 

        if(j.eq.1) then  

          do ix=1,ngx 

            do iy=1,ngy 

              do iz=1,ngz 

                grid(ix,iy,iz)=grid(ix,iy,iz)*-1. 

              enddo 

            enddo 

          enddo 

        endif 

      enddo 

c 

c  OUTPUT DATA 

c 

      write (0,*) 'Outputting data to output/'//outfile 

      open(unit=14,file=outfile,status='unknown',form='formatted') 

      write (14,*) 'nu',' excursion',' incursion',nint(cutoff*100),'%' 

      do inu=1,nnu 

        nu=numin+float(inu-1)*nustep 

        write (14,*) nu,(genus(inu,i),i=1,2),0.5*(genus(inu,1)+genus(inu,2)) 

      enddo 

      close(14) 

      write (0,*) 'Done' 

      end 

       

c 

c *********************************************************************************** 

c                               FUNCTIONS AND SUBROUTINES 

c *********************************************************************************** 

c 

      function genuscalc(nu,ngx,ngy,ngz,mgrid,grid,cutoff) 

c     Uses the method of Coles et al. (1996), MNRAS 281, 1375 

      implicit none 

      integer genuscalc                          ! returns absolute value of genus 

      real nu                                    ! density of contour (SD from mean) 

      real cutoff                                ! how much data to ignore round edge 

      integer ngx,ngy,ngz                        ! size of mask&data grids 

      real grid(ngx,ngy,ngz)                     ! data 

      real mgrid(ngx,ngy,ngz)                    ! mask 

      logical lxt,lyt,lzt,sqxyt,sqxzt,sqyzt      ! temporary ‘yes/no’s 

      integer point,cube,lx,ly,lz,sqxy,sqyz,sqxz ! counters for number of squares etc 

      integer ix,iy,iz,ix1,iy1,iz1               ! loop indices 

c     Initialise all the counters 

      point=0 

      cube=0 

      lx=0 

      ly=0 

      lz=0 

      sqxy=0 

      sqxz=0 

      sqyz=0 

c     Loop through each point in the grid 

      do ix=1,ngx 

        ix1=ix+1 

        if (ix1.gt.ngx) ix1=1 

c     Assures periodicity: the mask is assumed to be zero near edges in a wedge or  

       an intentionally non-periodic grid 

        do iy=1,ngy 

          iy1=iy+1 

          if (iy1.gt.ngy) iy1=1 

          do iz=1,ngz 

            iz1=iz+1 

            if (iz1.gt.ngz) iz1=1 

c     If this cell is within mask and above the threshold nu then it is a point 

            if (grid(ix,iy,iz).ge.nu.and.mgrid(ix,iy,iz).ge.cutoff) then 

              point=point+1 



c     Reset temporary ‘yes/no’s 

              lxt=.false. 

              lyt=.false. 

              lzt=.false. 

              sqxyt=.false. 

              sqxzt=.false.    

              sqyzt=.false. 

c     If the cells along the principal axes are above threshold then we have lines 

              if (grid(ix1,iy,iz).ge.nu.and.mgrid(ix1,iy,iz).ge.cutoff.and.ix1.gt.1)  

then 

                lx=lx+1  

                lxt=.true.    

              endif 

              if (grid(ix,iy1,iz).ge.nu.and.mgrid(ix,iy1,iz).ge.cutoff.and.iy1.gt.1)  

then 

                ly=ly+1 

                lyt=.true. 

              endif 

              if (grid(ix,iy,iz1).ge.nu.and.mgrid(ix,iy,iz1).ge.cutoff.and.iz1.gt.1)  

then 

                lz=lz+1 

                lzt=.true. 

              endif 

c     Now check for squares  

              if (lxt.and.lyt.and.grid(ix1,iy1,iz).ge.nu.and.mgrid(ix1,iy1,iz). 

ge.cutoff) then 

                sqxy=sqxy+1 

                sqxyt=.true. 

              endif 

              if (lxt.and.lzt.and.grid(ix1,iy,iz1).ge.nu.and.mgrid(ix1,iy,iz1). 

ge.cutoff) then 

                sqxz=sqxz+1 

                sqxzt=.true. 

              endif 

              if (lyt.and.lzt.and.grid(ix,iy1,iz1).ge.nu.and.mgrid(ix,iy1,iz1). 

ge.cutoff) then 

                sqyz=sqyz+1 

                sqyzt=.true. 

              endif 

c     Finally check for the cube 

            if (sqxzt.and.sqxyt.and.sqyzt.and.grid(ix1,iy1,iz1).ge.nu.and. 

mgrid(ix1,iy1,iz1).ge.cutoff) cube=cube+1 

            endif 

          enddo 

        enddo 

      enddo 

c     genus now calculated using a combination of the counters by Poincare’s theorem 

      genuscalc=cube-(sqxy+sqyz+sqxz)+(lx+ly+lz)-point+1 

c     write (0,*) 'cubes =',cube,' squares =',(sqxy+sqyz+sqxz),' lines=', 

(lx+ly+lz),' points =',point 

      return 

      end 

c 

c *********************************************************************************** 

c 

 

 

 

 

c 

c *********************************************************************************** 

c 

      subroutine lookup(ix,nx,ny,nz,densidx,jx,jy,jz) 

c     Look up grid coordinates (jx,jy,jz) of ixth density value in the index 

      implicit none 

      integer ix,iy,nx,ny,nz,jx,jy,jz 

      integer densidx(nx*ny*nz) 

      if (ix.gt.nx*ny*nz) ix=nx*ny*nz 

      if (ix.lt.1) ix=1 

      iy=densidx(ix)-1 

      jz=int(iy/nz/ny) 

      iy=iy-jz*nz*ny 

      jy=int(iy/nz) 

      iy=iy-jy*nz 

      jx=iy 

      jx=jx+1 

      jy=jy+1 

      jz=jz+1 

      return 

      end 

c 

c *********************************************************************************** 

c 

 


