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Abstract

Weak gravitational lensing by large-scale structure provides a unique probe of density

fluctuations in the universe. Gravitational lensing is directly sensitive to mass (rather

than light), and is therefore closely tied to modern cosmological theories, whose pre-

dictions are dominated by the distribution of an otherwise invisible component of dark

matter. The “cosmic shear” effect induces coherent distortions in the shapes of distant

galaxies, caused by gravitational light deflection from foreground matter along their

line-of-sight. The analysis of cosmic shear data therefore relies upon the geometry of the

foreground matter distribution, and the accurate measurement of galaxy shapes. This

technique is equally sensitive to all mass, regardless of its nature or state. In particular,

its systematic biases are not limited by unknown physics such as biasing or the mass-

temperature relation for x-ray selected galaxy clusters.

In this thesis, we perform a cosmic shear survey using the 4.2m William Herschel

Telescope on La Palma and the 10m Keck telescope on Hawaii, to a depth of R = 26

(z ≈ 1). The shear power spectrum is measured on scales from 1′ to 16′, and, by fitting

theoretical models, we obtain constraints on cosmological parameters with a precision

approaching that possible with other methods. We find that the normalisation of the

matter power spectrum on 8 Mpc scales, σ8 = 1.09± 0.12× (Ωm/0.3)−0.51, with the the

current density of mass in the universe Ωm between 0.25 and 0.8.

To calibrate new shape measurement algorithms, and to investigate the possible pre-

cision of future surveys, we have developed a method to accurately simulate deep astro-

nomical images. These include realistic galaxy morphologies and telescope characteris-

tics drawn from engineering models. The galaxies are based upon Hubble Deep Field

objects, and parameterized according to the “shapelets” formalism, which has been fur-

ther developed for our purposes. The complete shapelet basis set enables the modelling

of spiral arms, bars, discs, arbitrary radial profiles and even dust lanes or knots: an

important advance for high-precision shape measurement. We demonstrate that the im-

ages are realistic by showing that simulated and real data have consistent distributions

of morphology diagnostics including galaxy size, ellipticity, concentration and asymme-

try statistics.

The unique nature of its systematic errors, coupled with high resolution and stable

imaging from space, makes the outlook for cosmic shear highly promising. A proposed

vii
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300 square degree survey to R ≃ 28 should determine Ωm to within 1.5%. It will also

create projected mass maps with a resolution of 1 arcmin2, and mass-selected cluster

catalogues with a 1σ sensitivity of approximately 1013M⊙ at z = 0.25. These will trace

the evolution of structure over time, testing the gravitational instability paradigm, and

providing the ideal laboratories to investigate those complex astrophysical processes

which are the limiting systematics in other cosmological tests.
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Just remember that you’re standing on a planet that’s evolving,

And revolving at 900 miles an hour,

That’s orbiting at 19 miles a second, so it’s reckoned,

A sun that is the source of all our power.

The sun and you and me and all the stars that we can see,

Are moving at a million miles a day,

In an outer spiral arm at 40,000 miles an hour,

Of the Galaxy we call the Milky Way.

Our Galaxy itself contains 100 billion stars

It’s 100,000 light years side to side.

It bulges in the middle, 16,000 light years thick,

But out by us it’s just 3,000 light years wide.

We’re 30,000 light years from galactic central point,

We go round every 200 million years

And our galaxy is only one of millions of billions

In this amazing and expanding Universe.

The Universe itself keeps on expanding and expanding,

In all of the directions it can whizz.

As fast as it can go, at the speed of light you know,

12 million miles a minute and that’s the fastest speed there is.

So remember when you’re feeling very small and insecure

How amazingly unlikely is your birth,

And pray that there’s intelligent life somewhere up in space,

Because there’s bugger all down here on Earth.

— Monty Python.

Included for my own reference as much as anything else.
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1
Introduction for non-astronomers

1.1 Our expanding universe

The universe began about 13 thousand million years ago, in a hot Big Bang. During a

brief period known as “inflation”, which lasted only for a tiny fraction of a second, the

universe expanded rapidly. Immediately after inflation, the rate of expansion dropped

dramatically; but the universe continued to expand slowly. The universe then coasted

for the next 9 thousand million years. During all that time however, this expansion was

being gradually slowed by the gravitational attraction of the universe’s own contents,

which was trying to pull it back together. The gravity of normal “baryonic” matter

(which includes stars, dust, and everything else that we can see around us) was being

helped in this task by an additional component of invisible “dark matter”. Although

dark matter seems to have the same gravitational attraction as baryonic matter, it does

not emit light, at any wavelength. This makes it very difficult to detect directly, and it is

only by the indirect gravitational influence of dark matter that we know it is there at all.

During this slow overall expansion, small, isolated pockets of mass began to collapse.

The first stars and galaxies were formed from clouds of hydrogen in the early universe.

Figure 1.1 shows galaxies after about 6 thousand million years of evolution, some al-

ready with spiral arms that resemble those in the modern Milky Way. As more galaxies

were created, their random motions within the universe brought them into collisions

with their neighbours. Galaxies merged, a process that further changed their shapes;

and galaxies joined together into gravitationally-bound groups or clusters. This hier-

archical growth has continued until today, creating a complex filamentary network of

1



2 Chapter 1. Introduction for non-astronomers

large-scale structure, from the bottom up. The most massive objects in the universe are

now giant super-clusters of galaxies, each having captured several thousand individual

galaxies and weighing some 100-1000 billion times the mass of the sun.

Around 4 thousand million years ago, the universe appears to have entered a new

and unexpected stage of evolution. By that time, the universe’s expansion had diluted

both its baryonic and its dark matter content. As the influence of their gravity weakened,

a previously unnoticed form of mass-energy began to emerge into dominance from un-

derneath it. Frustratingly, this substance is again not directly visible, and it has been

given the equally unilluminating name “dark energy”. The properties of dark energy

are less-understood and even more peculiar than those of dark matter. For instance, it

has a strange negative pressure. This acts like a source of anti-gravity, and is beginning

to re-accelerate the expansion of the universe, long after the big bang. Science fact can

indeed turn out stranger than science fiction!

Figure 1.1: A deep image of the night sky taken with the 10m Keck telescope on Mauna Kea,
Hawaii. The large, hexagonal object is a bright foreground star; everything else is a distant
galaxy. Because of the finite speed of light, we see these galaxies as they would have looked a
long time ago. The faintest objects are from the early universe and are the progenitors of galaxies
like the Milky Way. The size of this whole image is just 2× 1.5 minutes of arc: It would take
almost 300 of these patches to cover the full moon.



1.2. The dark side of the universe 3

Figure 1.2: An increasing number of astrophysical phenomena cannot be accounted for if the
mass in the universe were limited to the normal “baryonic” matter that forms stars and shines
in the night sky. Spiral galaxies like NGC 4414 (Hubble Space Telescope image courtesy of
NASA)spin around too fast at their edges. Whole galaxies stay gravitationally bound within
clusters, despite reaching speed that ought to fling them out. All of these objects, and the uni-
verse itself, must contain an extra and mysterious component of invisible “dark matter”. There
is about five times as much dark matter in the universe as there is baryonic matter: enough to
also affect the overall evolution of the universe.

1.2 The dark side of the universe

Normal baryonic matter makes up only about a sixth of the mass in the universe to-

day, distributed amongst dust clouds, stars and galaxies. This amount is insufficient to

account for an increasing array of astrophysical phenomena without an additional com-

ponent of dark matter. For example, spiral galaxies like the Milky Way or galaxy NGC

4414 (shown in figure 1.2) spin around faster at their edges than would be possible if

they only contained the mass within their visible stars. Clusters of galaxies must also

be far more massive than they seem from counting just their visible light, because the

galaxies in them sustain velocities that would otherwise fling them out of the cluster.
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And if the entire mass of the universe were limited to only the visible galaxies and clus-

ters of galaxies, the rapid expansion started by the Big Bang could not yet have been

sufficiently slowed for the world around us to be assembled. Indeed, if there turns out

to be a lot of dark matter, the expansion of the universe will eventually stop, and it will

collapse back in on itself for a “Big Crunch” in another few tens of thousand million

years. On the other hand, the new dark energy component may instead re-accelerate the

expansion of the universe, and eventually tear it apart in a “Big Rip”!

We are left with the unsettling prospect that our fate, along with some 83% of the

mass in the universe, is of completely unknown form. Theories in cosmology and astro-

physics are chiefly able to deal with just mass and gravity; they cannot therefore distin-

guish between baryonic and dark matter. Dark energy is even further beyond everyday

experience, and it is a bewildering coincidence that mankind has evolved at precisely

the same moment that dark energy becomes important. Standard physics does not yet

have a satisfactory explanation for either of these substances. Indeed, we know neither

what they are, nor even exactly where they are!

I shall not be able to directly investigate the nature of dark matter or dark energy in

this thesis, but I will examine how much dark matter there is, and begin to find out how

it is distributed. Is it spread thinly but everywhere, in a uniform soup? Or is it clumpy,

with substructure like clusters, walls and voids? The first port of call in any exploration

has always been to draw a map of the unexplored territory, and to figure out the size of

whatever it is that we’re up against. In the search for dark matter, the map will certainly

be large, and the “You Are Here” sign is going to be right at the centre. We shall embark

on this exploration using a technique rooted in Einstein’s theory of General Relativity,

but which has only been of practical use within the last ten years. Recent advances in

telescope technology and the improved precision of optical instruments have made this

measurement possible.

1.3 Using gravity to look around corners

Of all the theories drummed home by earnest physics teachers, the first one to forget

is that light always travels in straight lines! Although this is certainly true most of the

time, it is not always necessary. And the reason for this comes down to the way that

gravity works. Gravity goes one better than dropping apples onto unsuspecting scien-

tists’ heads. According to general relativity, gravity in fact bends the entire fabric of the

universe!

A common way to demonstrate this bending needs a big sheet of rubber (see fig-

ure 1.3). The rubber sheet represents a two-dimensional slice through space. When the

mass of a planet or a star is placed in the centre of the sheet, the rubber sheet stretches,

and the grid drawn upon it is warped. In figure 1.3, the central mass has sunk out of

view. A second massive body is illustrated by the yellow sphere. This experiences the
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Figure 1.3: Rubber sheet analogy to describe the distortions wrought into the fabric of space and
time by the action of gravity. A mass in the centre of the grid, which has sunk out of view off
the bottom of the image, has stretched space around it like a sheet of rubber. A second mass,
shown as a yellow sphere, will either fall into or orbit around the first mass, depending upon its
initial velocity along the sheet. But because the very universe has been distorted, so is everything
within it: not just falling apples and orbiting planets, but even the previously straight paths of
light rays.

curved space around the first object as gravitational pull towards the centre. An apple

would fall towards the centre of the Earth. A planet would either fall into the sun or

orbit safely around it, depending upon its initial velocity along the sheet.

But gravity is more subtle than that. Since the entire fabric of the universe has been

stretched, every part of the tapestry woven into it becomes distorted. This even includes

rays of light. The light paths that were once straight lines now also curve towards the

central mass. For example, a black hole is just an object so extremely dense that nearby

light paths are curved right in on themselves, so the light can never escape. Near a

massive object, it is therefore possible to see around corners. The first experimental

confirmation of this theory came during a solar eclipse in 1919. It is obviously impossible

to see stars next to the sun most of the time. But when the moon passed in front of the

sun, and the sky went dark, their positions could be measured. Stars near the sun had

moved slightly from their normal positions, because the sun’s gravity was deflecting

their light. In fact, light rays which graze the surface of the sun are bent by 1.75′′, or

0.0005◦. Modern techniques using radio telescopes to accurately determine the positions
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Figure 1.4: Exaggerated cartoon illustrating the effect of gravitational lensing. Foreground dark
matter haloes around galaxy clusters deflect the light paths from background galaxies and dis-
tort their shapes. A circular source in the “weak lensing” regime around the outskirts of a cluster
is stretched into an ellipse observed from Earth. If the light passes through the “strong lensing”
regime near the centre of a cluster, the source can be highly distorted into giant arcs and multi-
ple images. In the background is a Hubble Space Telscope image of cluster Abell 2218 (source:
NASA).

of stars have confirmed the theory with astonishing precision.

Crucially, this light deflection is due only to the gravitational pull of the central ob-

ject. As that mass increases, light is deflected through larger and larger angles. And

because gravity does not distinguish between baryonic matter and dark matter, a mea-

surement of this effect will be sensitive to the total mass of an object, irrespective of its

nature and composition. Now that our telescopes are capable of measuring the small

angles involved, we can explore the universe in ways that were previously unavailable

to astronomy. Using just basic geometry to work out some deflection angles, we can

map out the otherwise invisible distribution of dark matter.
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1.3.1 Strong gravitational lensing

The distortion of light rays is greatest near massive clusters of galaxies like Abell 2218,

which is shown in the background of figure 1.4. This cluster is so massive that the light

from galaxies behind it has been deflected through angles large enough to stretch their

images into arcs. In fact, each background galaxy may be visible as several distinct arcs,

like the “multiply-imaged” pair of light blue objects in the top right-hand corner. In this

case, there were at least two different routes that the light could take around the cluster

and still get deflected towards the Earth. If a background galaxy is lined up exactly with

the foreground cluster, light from it can take any route around the intervening mass, so

the arcs stretch into a full circle known as an Einstein ring.

Gravitational light deflection is known as “lensing” because a similar bending and

focussing of light also happens in the lens from a pair of spectacles or a magnifying

glass. The arcs in figure 1.4 have also been highly magnified by the gravitational lensing

of cluster Abell 2218. A massive cluster acts like a giant natural telescope, enabling us to

see fainter or more distant objects than is otherwise possible. The arcs are indeed much

farther away than similarly bright objects elsewhere in the figure. That extra distance

makes this picture fascinating, because the finite speed of light means that its light has

taken a long time to reach us. In fact, light from the faintest arcs around Abell 2218 left a

galaxy up to 12 thousand million years ago, letting us directly observe conditions in the

very early universe.

1.3.2 Weak gravitational lensing

Clusters of galaxies are relatively rare objects. To measure the average density of the uni-

verse today, we need to look away from clusters and find a more representative sample.

The large-scale distribution of galaxies has already been investigated using surveys like

the Anglo-Australian Telscope’s “2dF” survey, named after the instrument’s 2 square

degree field of view. Results from 2dF, reproduced in figure 1.5, show that galaxies are

distributed in a cellular network, with small concentrations making up filaments and

walls around huge empty voids.

The network of 2dF galaxies roughly trace the foreground mass distribution, which

gravitationally lenses background objectss — although in less spectacular style than

around massive clusters. Light gets only slightly deflected when it passes through the

large-scale structure or the outskirts of a cluster. In the same way that text appears

distorted when it is viewed through the edge of a cheap magnifying glass, the images

of distant galaxies appear slightly stretched in one direction. All distant galaxies are

viewed through this ubiquitous network, and weak lensing makes any deep observa-

tion seem like a view through a distorted window pane, or one of those terrible glass

bricks used in 1970’s bathrooms.

The small distortions created by weak gravitational lensing are not visible to the
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naked eye, and are not detectable in the image of any individual galaxy. The distortion

has to be measured statistically, by averaging the shapes of many distant galaxies in

a patch of sky. The galaxies’ own spiral or elliptical shapes cancel out when they are

averaged, and produce a circle. However, if the shapes of adjacent galaxies have all

been elongated a little in the same direction, the residual after averaging will instead be an

ellipse like that shown in figure 1.4. From the orientation and axis ratio of such ellipses,

it is possible to infer the intervening mass along a lone of sight. The mass can then be

mapped out to determine the location of dark matter clumps, and analysed statistically

to measure the total weight of the universe.

At the risk of spoiling the ending, but to save your searching through the rest of

this thesis, I shall give away the answer. The average density of the universe is approxi-

mately 10−23 grams (about one hydrogen atom plus five equivalent units of dark matter)

per cubic metre. That might not seem much, but then the universe is very big!

Figure 1.5: The large-scale structure of the universe seen by the Anglo-Australian Telescope 2dF
Galaxy Redshift Survey (Colless et al. 2001). The Earth is at the centre, and every blue dot rep-
resents the location of a galaxy in two thin slices extending out into the universe. The observed
density of galaxies decreases far away from the Earth because they appear fainter and are more
difficult to detect. Notice the cellular and filamentary patterns in the distribution of large-scale
structure. These all act as small gravitational lenses, distorting light rays from background galax-
ies as they navigate through this network to produce the cosmic shear effect.



2
Background theory

2.1 Cosmology

2.1.1 The Big Bang and expansion of the universe

The key discoveries in the development of modern cosmological models began with

Hubble’s 1929 observation that galaxies in all directions are moving away from the

Milky Way, caught up in the overall expansion of the universe. As Layzer (1957) and

Shane et al. (1959) looked on larger and larger scales, a surprising homogeneity became

apparent in the distribution of galaxies: even regions of the universe too far apart to be

causally connected today were sufficiently close to have interacted in the past. Penzias

& Wilson (1965) then discovered the ubiquitous Cosmic Microwave Background (CMB)

radiation, a remnant of the hot early universe that had been cooled by the subsequent

expansion of the universe to its current temperature of 2.7K. The standard picture of

the universe that we have today is based around the “Big Bang inflationary model”,

pioneered by Guth (1981).

The cornerstone for all of this is Hubble’s law

~v =H~r , (2.1)

which relates an object’s recession velocity ~v away from us to its overall distance ~r. The

constant of proportionality is known as Hubble’s constant. We can parameterize the size

of the universe by a scale factor a(t), which is normalised so that its size today is unity.

(The present value of other time-varying quantities will be denoted by a subscript 0.)

9
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Noting that the proper (real space) separation ~r between two galaxies is proportional to

a(t), we recover Hubble’s law if

H =
ȧ(t)

a(t)
, (2.2)

where the dot denotes differentiation with respect to time, and the comoving size is

related to the cosmological redshift z by

a(t) =
1

1+ z
. (2.3)

Notice that Hubble’s “constant” can in general vary as a function of time. For later

convenience, we define a dimensionless parameter h based upon its value today

H0 ≡ 100h km s−1 Mpc−1 . (2.4)

The best measurements of this parameter are from the HST key project: h = 0.72± 0.02
(Freedman et al. 2001) and WMAP+SDSS: h = 0.70+0.04−0.03 (Tegmark et al. 2003). This posi-

tive value means that the universe is currently expanding.

The distance between two points is not uniquely defined in a universe that is ex-

panding, and which may not be Euclidean. The most useful quantity for gravitational

lensing will be the angular diameter distance,

D(z) ≡
λphys(z)

θapparent(z)
, (2.5)

defined in analogy to the flat space relation between the physical size of an object λphys

and its apparent size θapparent for a distant observer. In currently-favoured models, the

apparent angular size of an object does decrease with distance, until z ∼ 1. Beyond

that, however, it starts to increase again, in a counterintuitive fashion: with more distant

objects appearing larger (but fainter).

The set of points that are sufficiently close to have exchanged a photon since the

Big Bang (and have therefore been causally connected) define the distance to a particle

horizon

RH(t) = a(t)

∫ t

0

cdt′

a(t′)
. (2.6)

For more details of these and other distance measures, see Hogg (2000).

2.1.2 Geometry of the universe

Robertson (1935) and Walker (1936) found the most general space-time metric that can

describe an expanding universe filled with isotropic and homogeneous matter. The

Robertson-Walker metric is
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ds2 = −dt2+ a2(t)

[
dr2

(1−Kr2) + r
2(dθ2+ sin2 θdφ2)

]
, (2.7)

differing from the flat Minkowski metric of special relativity in the addition of a(t) plus

one further free parameterK, which describes the overall curvature of the universe and

is very close to zero today. Inflation flattened the universe by rapidly pushing the scales

of curvature beyond the observable horizon.

In General Relativity, the curvature of the universe is related to its total stress-energy

tensor Tµν by Einstein’s equation

Rµν −
1

2
gµνR = 8πGTµν +Λgµν , (2.8)

where the Ricci tensor Rµν and Ricci scalar R are functions of the metric tensor gµν , and

where Λ is a constant of integration. We assume that matter in the universe is indeed

a perfect fluid (homogeneous, isotropic and with no shear stress). The stress-energy

tensor of the universe Tµν is then guaranteed to be diagonal, and may be constructed

from the components of density ρ and pressure p, with T00 = −ρc2 and Tij = pgig (using

the fact that the pressure is just the flux density of x-momentum in the x direction).

Evaluating the temporal and spatial components of Einstein’s equation results in the

two Friedmann equations

ȧ2 =
8πG

3
ρa2 −K (2.9)

ä = −4πG
3
a(ρ+3p) . (2.10)

Note that the first of these can also be derived from Newtonian theory, up to a con-

stant of integration, by considering the conservation of energy for an expanding shell

of the universe. The second is then the time-derivative of the first, coupled with the

assumption about mass conservation in equation (2.15). The Friedmann equations form

the basis of modern cosmological models, and a full derivation can be found in e.g. Pee-

bles (1993) or Peacock (1999).

Solving these differential equations provides a clearer illustration of the effect of the

curvature of the universe upon its growth. During the first, “radiation dominated” stage

in the evolution of the universe, its pressure and density are related by p = ρ/3. This

leaves three possibilities for the evolution of its scale factor
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a(t) ∝





√
8πGρrK
3

[
1−

(
1− t

√
3

8πGρr0

)2] 12
forK > 1

2
(
2πGρr
3

)1/4
t1/2 forK = 0

√
8πGρrK
3

[(
1 + t

√
3

8πGρr

)2
− 1
] 1
2

forK < 1

(2.11)

This reveals the direct connection between the density of the universe ρ and its global

curvatureK. A convenient analogy can be drawn to the escape velocity of a rocket from

the Earth. The rocket’s eventual trajectory is determined by its initial velocity and the

mass of the Earth. In cosmology, the initial velocity of expansion is determined after

inflation; it is the mass of the universe that will determine its eventual trajectory and

fate. We can define a density parameter

Ω ≡ ρ
ρc
=
8πG

3H2
ρ , (2.12)

relative to the critical density of the universe ρc.

If Ω < 1, the universe has negative global curvature (or an open space-time) and, no

matter what the ratio between different types of matter, it will continue to expand for

ever. If ρ = ρc, and Ω = 1, the universe has no curvature (or a flat space-time). It has

escape velocity and although it will always slow down, (if Λ = 0) it will just continue to

expand for ever. If Ω > 1, the universe has positive global curvature (or a closed space-

time). In the absence of Λ, it will eventually collapse back onto itself in a “Big Crunch”.

However, as we shall see in the next section, the addition of non-zero Λ can alter this

behaviour by accelerating the expansion at very late times.

2.1.3 Contents of the universe

The density ρ and pressure p, of the universe are in general related by an equation of state

p = wρ , (2.13)

with a parameter w that we shall discuss in a moment, and where we now choose units

such that the speed of light is unity.

The net mass-energy in a volume element V of the universe is U = ρV , plus a negligi-

ble term containing its gravitational potential energy. As the universe expands, this vol-

ume element does work on the external pressure, but conservation of energy demands

that

dU = −pdV
ρdV + V dρ = −pdV , (2.14)
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where we have expanded the product d(ρV ). Thus the energy density scales as

ρ̇ = −(p+ ρ) V̇
V
= − 3(p+ ρ) ȧ

a
ρ̇

ρ
= −3(1 +w) ȧ

a
. (2.15)

The universe may in fact consist of several separate components of mass and en-

ergy. The standard “ΛCDM” cosmological model that will be assumed in this thesis

contains normal baryonic matter, non-interacting Cold Dark Matter, radiation, and a

cosmological constant Λ. These are differentiated by their independent equation of state

parameters wi and the total energy density is ρ = ρm + ρr + ρΛ.

• Baryonic matter

Baryonic matter is the stuff from which stars, planets and astronomers are made;

It includes everything that shines. We denote the mean density of baryons in the

universe by ρb. Since they are strongly clustered and separated by voids, it is a

reasonable approximation to assume that they exert no pressure on large scales.

Hence we adopt the usual equation of state for dust, with wb = 0.

Substituting this relation into equation (2.15) shows that the density of baryons

scales, as expected from conservation of mass, like the inverse volume of the ex-

panding universe ρb ∝ a−3.

• Dark Matter

Dark matter does not interact with photons or other matter by the electromagnetic

force. It is therefore difficult to detect directly, because it does not shine. How-

ever, dark matter is indistinguishable from baryons in respects of its gravity. It has

exactly the same attraction, and produces exactly the same gravitational lensing

effects. Since we can therefore detect them equally, and since the values of the con-

cordance cosmology show that there is vastly more dark matter than baryons, we

choose to subsume both types into one measurable density, ρm. Neither baryons

nor dark matter have any pressure, so ρm evolves ∝ a−3.

The temperature of the dark matter reflects its average kinetic energy and affects

its virial radius under gravitational infall. Since it does not shine, it can not cool by

photon emission. Its energy is gradually lost into the expansion of the universe,

but this is a much slower process. In current cosmological models, dark matter

decoupled from the radiation very early in the evolution of the universe, and it

has indeed had a long time to become cold dark matter (CDM).
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• Neutrinos

Neutrinos are present throughout the universe, and interact weakly with baryonic

matter. For many years, they were a potential candidate for the unknown con-

stituents of dark matter. By contrast with standard CDM, neutrinos have a lot of

kinetic energy, and they would make hot dark matter. The free streaming of neutri-

nos into voids would produce a larger coherence length for large-scale structure

(White, Frenk & Davis 1983) and cluster sizes (White, Davis & Frenk 1984) larger

than those observed. Alternatively, galaxies would have needed to have formed

uncomfortably recently, at z < 2 (Frenk, White & Davis 1983).

Although neutrinos apparently do not have enough mass to contribute to the evo-

lution of the universe, recent measurements suggest that it is indeed non-zero.

Their total mass could be around the level of the baryonic contribution (Abazajian

& Dodelson 2003) but, for simplicity, we assume ρν ≡ 0 in this thesis.

• Radiation

The sea of photons throughout the universe can be regarded as a perfect fluid, with

a traceless stress tensor, mean density ρr, and equation of state parameterwr = 1/3.

Substituting this into equation (2.15) shows that the radiation density scales as

ρr ∝ a−4. This is easily explained in terms of an a−3 volume dilution plus a further

a−1 due to the cosmological redshift raising the wavelength of light and lowering

its energy. As witnessed by the very cold temperature of the CMB today, radiation

currently provides a negligible contribution to the total mass density of the uni-

verse today. However, it was dominant in the early universe, immediately after

inflation.

• Cosmological constant/dark energy

Einstein (1917) first hypothesized the existence of a cosmological constant Λ as the

constant of integration for energy conservation in Einstein’s equation (2.8). This

allowed the possibility of a static universe, which was a more appealing prospect

prior to the acceptance of Hubble’s results. However, there is no a priori reason

why Λ need be zero just because modern models allow an expanding universe,

and it emerges as the energy density of the vacuum ρΛ = Λ/(8πG).

An equation of state parameter wΛ ≡ −1 ensures that ρΛ ∝ a0 is indeed at constant

density throughout the evolution of the universe. It will therefore become the

dominant energy contribution at very late times, once the other components have

been rarified. The negative pressure of a cosmological constant then re-accelerates

the expansion of the universe.
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Recent models replace the relatively simple cosmological constant with quintessence

or dark energy, whose equation of state parameter wQ is not only 6= −1 but which

may also vary as a function of time. Current observations of supernova prefer

models where wQ is close to −1 today (e.g. Knop 2003), but its evolution remains

completely unconstrained. Some basic models of dark energy will be considered

in chapter 6, but in general we shall assume that wΛ ≡ −1.

Combining all of these components, we find that, for a ΛCDM model, the total density

and pressure of the universe scale as

ρ(t) =
ρm
a3(t)

+
ρr
a4(t)

+ ρΛ (2.16)

p(t) =
ρr
3a4(t)

− ρΛ (2.17)

The universe has undergone several distinct periods of evolution, each dominated by

one of these different forms of energy density. The early universe (at small a) was dom-

inated by radiation. As the universe expanded and the energy density of radiation de-

creased, there came a time when ρr = ρm known as matter-radiation equality aeq. This

was followed by a period of matter dominance, during which the temperature fell suffi-

ciently for matter and radiation to decouple and the universe to become translucent. As

both matter and radiation become more and more diluted in very late times, the contri-

bution from a cosmological constant or dark energy is now becoming significant. The

universe is currently entering what may be the final stage in its evolution, with the en-

ergy density dominated by a cosmological constant, and its expansion accelerating once

again.

2.1.4 Mass inhomogeneity in the early universe

The distribution of mass fluctuations immediately after inflation sets the inital condi-

tions that will determine its subsequent evolution. As we have seen, the vacuum energy

density of the universe is non-zero: the universe is full of a small-scale quantum froth

with mass-energy continually appearing and disappearing. At the moment of inflation,

this inhomogeneous distribution was suddenly enlarged to spatial scales beyond the in-

fluence of quantum mechanics. Although the amplitudes of these density fluctuations

relative to the mean density 〈ρ〉,

δ (~x, t) =
ρ (~x, t)− 〈ρ ((~x, t)〉
〈ρ ((~x, t)〉 , (2.18)

were very small, the quantum fluctuations were thus enlarged to macroscopic scales

and captured. They provided the seeds for later structure formation via gravitational

instability.
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Since the initial fluctuations were produced by a large number of random quantum

events, the central limit theorem ensures that their distribution was a Gaussian random

field. The phases of such a perturbed density field are random, and all of its statistical

properties of the distribution are furthermore described by its initial Power Spectrum

Pi(~k) ≡

〈
δ̃
(
~k
)
δ̃
(
~k′
)〉

(2π)3 δ3
(
~k−~k′

) (2.19)

where tildes denote a Fourier transform and δ3 is a three-dimensional delta function.

The homogeneity of the universe ensured that the power spectrum is isotropic, so

Pi(~k) = Pi(k), where a real space distance λ ∝ 1/k. Although the shape of the power

spectrum is not precisely predicted by inflationary theory, there is no reason to favour

any one scale over all others, so P (k) must be a power law, parameterized only by its

amplitude on one scale and an index n

Pi(k) ∝ kn , (2.20)

which expresses the balance between small-scale and large-scale structure.

2.1.5 Linear growth of structures

In the radiation dominated era immediately after inflation, the universe was approxi-

mately flat and expanding (as shown by the solution of the Friedmann equations 2.11)

at a rate a∝ t1/2. The physical scale of density fluctuations λphys grew with this inflation

λphys ∝ a ∝ t1/2 . (2.21)

The amplitude of the density fluctuations simultaneously began to grow, as surround-

ing matter began to flow towards the primordial seeds under gravitational instability.

Relativistic perturbation theory is required to include an analysis of fluctuation modes

on super-horizon scales (e.g. Padmanabhan 1993), but it shows that the growth of the

amplitude of small fluctuations (δ ≪ 1) in an approximately Einstein-de Sitter universe

is linear in time

δ(~x, t) ∝ t . (2.22)

Thus the initial power spectrum (2.20) began to rise on all scales. During the radia-

tion dominated era however, the smallest and most dense perturbations became inter-

nally supported by radiation pressure, and could not condense further than the particle

horizon (strictly the Jeans length λJ , in analogy with the collapse of stars, but this scale is

proportional to the particle horizon). Evaluating equation (2.6) during this epoch, shows

that the particle horizon was growing as
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RH ∝ t , (2.23)

which is faster than the growth of the physical scale of the fluctuations.

When a fluctuation then inevitably “entered the horizon”, i.e. RH > λphys, its growth

was halted. Let us denote this time tJ(λ). The amplitude of the fluctuation continued to

oscillate under the opposing influences of its gravity collapse and internal pressure, but

remained constant when averaged over time. Combining equations (2.21) and (2.23), it

is clear that

tJ(λ) ∝ λ2 , (2.24)

which left the amplitude of large-scale fluctuations at the end of the radiation-dominated

era

δ (~x, t) ∝ λ2δ (~x, t)

∝ δ (~x, t)

k2
. (2.25)

In terms of power spectra, this emerges as an effective suppression of power on small

scales known as the Mészáros effect

Pδ(k) ∝
Pi(k)

k4
= kn−4 . (2.26)

Measurements of the CMB at large scales from WMAP give n ≃ 1. Therefore

Pδ(k) ∝
{
k for k≪ k0
k−3 for k≫ k0

(2.27)

where k0 defines the turnover point in the power spectrum, determined by the horizon

size at the end of the radiation-dominated era (the time of which is influenced by Ωm).

Inserting the measured values from the concordance cosmology model and performing

the calculation numerically,

k0 ≈ 0.083(Ω0h2)Mpc−1 . (2.28)

After matter-radiation equality, the radiation pressure support was removed from

density fluctuations. There was nothing to prevent the further growth of structures dur-

ing the matter-dominated era, until they became much more dense at very late times,

which we shall deal with in the next section. The expansion of the universe caused the

physical scale of fluctuations to grow as a∝ t2/3, but fluctuations collapsed equally on all

scales and the amplitude of the power spectrum was raised without changing its shape.

The final prediction for the matter power spectrum by linear evolution is plotted in
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figure (2.1). The change in shape induced by the Mészáros effect from the initial power

spectrum is often referred to as the transfer function T (k). The amplitude is convention-

ally parameterized by the rms σ8 of fluctuations that would be found inside independent

8h−1Mpc spheres scattered throughout the universe. This particular scale is chosen so

that the parameter is roughly unity. It can be calculated from the power spectrum via

σ28 ≡
∫
P (k)W (k,Rf )dk (2.29)

where the Fourier transform of a spherical top hat window function withRf = 8h
−1Mpc

W (k,Rf ) =
3k2

2π2(kRf )3
(sin(kRf )− kRf cos(kRf )) , (2.30)

peaks around k = 1/(8h−1Mpc) but also covers a range of scales.

The amplitude and shape of the linear matter power spectrum are primarily deter-

mined by two parameters, Ωm and σ8. It is these that define both the density and the

first-order distribution of matter in the universe, and therefore towards measurements

of these parameters that we shall direct our efforts in this thesis.

2.1.6 Non-linear growth of structures

Like all astronomical techniques, weak lensing requires its own calibration, has obser-

vational limitations and hindrances, and is subject to possible systematics that must be

controlled. One of the most significant problems is that current cosmic shear surveys are

sensitive to spatial scales where mass overdensities have already grown in amplitude

beyond the point where linear perturbation theory is valid. As the perturbations grew,

the rate of gravitational infall accelerated around them, and power was shifted from

large scales onto small scales. Unfortunately, practical calculation of the many and com-

plicated higher-order terms involved in this gravitational collapse requires large n-body

simulations.

Peacock & Dodds (1994, 1996) ran numerical simulations of large-scale structure in

several standard cosmological models, and derived fitting functions for the resulting

power spectra. These fitting functions were based upon an assumption of stable cluster-

ing on small scales, where the resolution of their simulations was limited. This purports

that collapsing objects will eventually support themselves on small scales and stop col-

lapsing. Since they will continue to move farther apart in the Hubble flow, P (k)→ k−3
on small scales. Ma (1998) expanded the numerical simulations to incorporate cosmo-

logical models containing dark energy. These will be used to predict the sensitivity of

future cosmic shear surveys in chapter 6.

The results in chapter 3 of this thesis use the recently updated numerical simulations

of a ΛCDM cosmology by Smith et al. (2003). Their higher resolution VIRGO n-body

simulations provided more accurate fitting functions for the mass power spectrum, and
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Figure 2.1: Three-dimensional mass power spectrum P (k). The dotted line shows the predic-
tion from linear theory. The solid line includes the full non-linear correction, using the fitting
functions from Peacock & Dodds (1996) and the values for cosmological parameters given in
equations (2.31) to (2.34).

these are shown in figure 2.1. These simulations were able to probe sufficiently small

scales that the profile of individual clusters becomes dominant. The observed “NFW”

profile (Navarro, Frenk & White, 1995) truncates the power spectrum at high k. How-

ever, this is of limited consequence for weak gravitational lensing measurements, which

do not probe such small scales. The major impact for our work is in the interpolation

between this regime and large scales, in which current surveys are most sensitive. The

more accurate simulations from Smith et al. (2003) have lowered weak lensing estimates

of σ8 by between 5% and 10% compared to those by Peacock & Dodds (1996). It will be

a clause throughout this thesis that the interpretation of our cosmic shear results relies

upon the accuracy of fitting functions derived from numerical simulations to correct for

the non-linear evolution of the power spectrum.

2.1.7 Concordance cosmology?

Independent cosmological tests and observational techniques are largely beginning to

agree upon the values of most of the universe’s fundamental parameters. This con-
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vergence has prompted the currently-favoured ΛCDM model to become known as the

concordance cosmological model. Measurements of temperature fluctuations in the CMB

are highly sensitive to the global curvature of the universe, and to the matter density at

the time of last-scattering. The latest results from the Wilkinson Microwave Anisotropy

Probe (Spergel et al. 2003; hereafter WMAP) have successfully confirmed that the uni-

verse is indeed flat (or very nearly), and has a relatively small matter component that

implies the existence of a significant cosmological constant.

However, the CMB probes only very early times in the evolution of the universe,

which were far removed from our present situation. The cosmological constant was

insignificant during this epoch, so predictions from just CMB data are highly model-

dependent, and parameter constraints have many degeneracies. Tighter constraints can

be drawn upon Λ by combining CMB data with information about current large-scale

structure. Knowledge of the power spectrum P (k, z) during these two widely-separated

redshifts traces the growth of structure, and measures the competing influences of Ωm

and ΩΛ, over time. Local data is typically obtained from galaxy redshift surveys like the

Anglo-Australian Telescope two degree field survey (Colless 1999; hereafter 2dF) or the

Sloan Digital Sky Survey (York et al. 2000; hereafter SDSS). The best measurements of

current cosmological parameters, as fractions of the critical density, are

Ω = 1.06± 0.05 (2.31)

Ωb = 0.048± 0.005 (2.32)

Ωm = 0.30± 0.04 (2.33)

ΩΛ = 0.70± 0.04 , (2.34)

using SDSS plus WMAP data (Tegmark et al. 2003).

A direct measurement of the expansion of the universe, and on a finer resolution of

time-steps, can be obtained from the distances to type Ia supernovæ at various redshifts

(Perlmutter et al. 1998; Riess et al. 1999; Knop et al. 2003). Supernovæ are bright enough to

be seen from great distances; yet after various calibration factors (to account for variable

source metallicity and dust obscuration along the line of sight, which can be determined

from their spectra), all type Ia supernovæ have the same brightness. They therefore act

as standard candles, and can be used to detect deviations from Hubble’s law (2.1).

Ωm = 0.28± 0.10 (2.35)

ΩΛ = 0.72± 0.10 . (2.36)

(Knop et al. 2003). Supernova observations also provide the main evidence for the accel-

eration of the universe caused by dark energy.



2.1. Cosmology 21

The baryon density, and the time available for nucleosynthesis immediately after the

Big Bang predict the abundances of light elements in the early universe (Burles, Nollett &

Turner 1999). Comparing these predictions to the observed abundances in local, metal-

poor regions, like isolated HI clouds (Copi, Schramm & Turner 1995; Kirkman et al. 2003)

or quasar absorption systems (Tytler et al. 2000) that have experienced little subsequent

star formation, gives

Ωb = 0.044± 0.015 . (2.37)

As we can see, the agreement between these results is impressive. However, the

interpretation of these numbers is still model-dependent. To find out what they really

mean, and to witness the process of structure formation in action, requires a more direct

detection and mapping of the mass distribution. However, all classical cosmological

tests are hindered by the overwhelming prevalence of dark matter compared to light

emitting material. Galaxy redshift surveys detect only the biased light distribution (e.g.

Weinberg et al.2003). Detecting the majority of mass in the universe is only possible via

indirect techniques, which require subsequent physical interpretation.

Crucially, different measurement methods currently disagree about the amplitude of

the mass power spectrum, at approximately the 1σ level. The combination of SDSS plus

WMAP data by Tegmark et al. (2003) gives

σ8 = 0.91
+0.11
−0.10 . (2.38)

However, Lahav et al. (2002) use 2dF and (pre-WMAP) CMB data instead, finding

σ8 = 0.73± 0.05 . (2.39)

Until recently, peak statistics of the mass distribution obtained from x-ray selected clus-

ter counts, had given

σ8

(
Ωm
0.3

)0.65
= 1.0± 0.07 , (2.40)

(Pierpaoli, Scott & White 2001; see also consistent estimates by Viana, Nicholl & Liddle

2002 and Eke et al. 1998). However, the mass of these clusters requires calibration via

the mass-temperature relation (e.g. Huterer & White 2003). The cluster normlisation

has recently been revised to a lower value, mainly due to improved observations of the

mass-temperature relation replacing simulated ones. Using these observations, Seljak

(2001) finds

σ8

(
Ωm
0.3

)0.44
= 0.75± 0.06 . (2.41)

Different results again are given by surveys of weak gravitational lensing. Refregier
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(2003) compiled an average of several recent survey results, which gives

σ8 = 0.83± 0.04 . (2.42)

Some or all of these methods must clearly be contaminated by unknown systematic

effects. Yet weak gravitational lensing possesses the unique benefit that its calibration

factors do not rely upon complicated or poorly-understood physics. As we shall see in

the next section, the analysis of weak gravitational lensing data is a purely geometric

task, and the main difficulties in its measurement concern careful image analysis and

the parameterization of galaxy shapes. These difficulties can be overcome with new al-

gorithms that are being developed to perform more accurate data reduction. Existing

weak lensing surveys already constrain cosmological parameters at a level similar to

those from other techniques. In the near future, weak lensing promises to be the most

trusted probe of the dark matter distribution, and to provide a direct test of the gravita-

tional paradigm for structure formation.

2.2 Gravitational lensing

2.2.1 The lens equation

The most general isotropic space-time metric to describe a section of the universe con-

taining a central mass concentrationM , but otherwise empty, is the Schwarzchild metric

ds2 = −
(
1− 2GM

r

)
dt2 +

dr2(
1− 2GMr

) + r2
(
dθ2+ sin2 dφ2

)
. (2.43)

Its null geodesics are circular at the Schwarzchild radius rS = 2GM , and are still curved

farther out. This results in the deflection of light rays when they pass near a massive

body, as illustrated in figure 2.2. Following the full analysis of the null geodesics in the

vacuum (e.g. Schutz 1985), it can be shown that, for an impact parameter ~ξ, the deflection

angle

~̂α = −4GM
~ξ

|~ξ|2
. (2.44)

in the weak field limit where 3GM/~ξ ≪ 1. This will certainly be acceptable for cosmic

shear studies which are concerned with the vast majority of the universe away from the

central cores of clusters.

Note that the deflection is exactly twice that predicted in Newtonian theory, due to

the warping of both space and time in general relativity. Contact can be recovered with

classical quantities via the relation
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~̂α =
−2
c2

∫
~∇⊥Φdℓ , (2.45)

where we have reinserted the speed of light; the integral is along the geodesic; and ~∇⊥Φ
is the gradient of the Newtonian gravitational potential taken in the plane perpendicular

to this path. In the weak field limit, the small angles involved ensure that is is acceptable

to integrate along the unperturbed path of the light ray.

Note that the equation (2.45) is exactly equivalent to that describing the deflection of

light by an optical lens with refractive index n= 1− 2Φ/c2. Hence it really is appropriate

to use the word lensing, even though the light is not focussed to a point by a gravitational

lens. Furthermore, this refractive index and the deflection angle are independent of

the nature of the intervening mass and of the wavelength of the light. Measurements

of gravitational lensing will therefore be equally sensitive to baryonic or dark matter

lenses; and a survey may be performed in any colour. Optical bands are normally the

most convenient because of the comparatively advanced detector technology and high

number density of background sources, but gravitational lensing has also been detected

in the near infra-red (Gray et al. 2001; King et al. 2002) and with high spatial resolution

in radio observations (Chang & Refregier 2003).

Measurements are similarly unaffected by astrophysical contaminants like the red-

dening or absorption of light by intervening dust (which can be an inconvenience, given

that natural targets are often located behind a massive cluster), the physical nature of

the lens, or the evolution of the source galaxies. Gravitational lensing is instead a purely

geometric effect. Of course, calculation of the geometry does require knowledge of the

distance to the sourceDS and to the intervening lens DL. Recalling the definition of the

angular diameter distance (equation 2.5), we define the reduced deflection angle

~̂α ≡ DLS

DS
~α , (2.46)

where DLS is the angular diameter distance between the lens and the source (DLS 6=
DS −DL). Bearing in mind the sign of ~α, we can then simply read off the lens equation

~β = ~θ+ ~α(~θ) . (2.47)

directly from figure 2.2. This defines a mapping from the source plane (~θ) to the lens

plane (~β).

Although the real universe does not consist of one completely isolated point mass, a

galaxy is made of many individual stars and a cluster of many individual galaxies. The

linear equations (2.45) and (2.47) are therefore also valid for any system built up from a

superposition of lenses, as long as the mass distribution ρm is geometrically thin (≪DL,

DS). If we project such a mass distribution onto the lens plane, it can be described by

the dimensionless surface mass density
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Figure 2.2: Sketch of a typical gravitational lens system.

κ(~θ) =
4πG

c2

∫
DLDLS

DS
ρm(θ, ℓ)dℓ (2.48)

≡ Σ(~θ)

ΣC
, (2.49)

where the critical surface mass density

ΣC =
c2

4πG

DS

DLDLS
(2.50)

conveniently contains the relevant distances in the lensing geometry. Continuing this

two-dimensional analogy, we can also define a projection of the Newtonian potential Φ

as the lensing or deflection potential
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Ψ(~θ) =
DLS

DLDS

2

c2

∫
Φ(DL

~θ, z)dz (2.51)

=
1

π

∫
κ(~θ′) ln |~θ− ~θ′| d2~θ′ . (2.52)

In this case, the potential Ψ(~θ) satisfies the Poisson equation

∇2Ψ(~θ) = 2κ(~θ) , (2.53)

and the deflection angle is simply

~α(~θ′) = −∇Ψ (2.54)

=
−1
π

∫
κ(~θ′)

~θ− ~θ
|~θ− ~θ|2

d2~θ′ . (2.55)

2.2.2 The differential deflection of adjacent light rays

Without knowing where an image would appear in the absence of lensing, measuring

the observed position of a point source does not tell us anything about a gravitational

lens. Fortunately, spatially extended and resolved background sources are more use-

ful. Since two adjacent light rays from the source pass through an intervening lens at

slightly different distances ~ξ = DL~θ from the optical axis (see figure 2.2), they are de-

flected through slightly different angles ~α. This differential deflection distorts the image

seen by the observer.

The deflection of light rays and the mapping from source plane to image plane is

completely described by the lens equation (2.47). Around a strong lens, this can be a

complicated expression, producing the multiple images and large arcs seen frequently

around massive clusters. In this thesis, we shall instead consider the weak lensing regime,

defined by κ≪ 1, where we shall find that the mapping is one-to-one and invertible.

We shall require source galaxies to be resolved, but smaller than the scale on which

variations occur in the slope of the lens’s gravitational potentialΦ(~θ). Substructure does

exist within lenses, and the local fluctuations created in a gravitational potential have

been found to alter the magnification ratios between multiple images in strong lens sys-

tems. However, we shall be able to gather a very large population of sources and average

over all such local deviations.

In this case, the lensing equation (2.47) has a (first-order) Jacobian

Aij(~θ) =
∂βi
∂θj

= δij −
∂2Ψ(~θ)

∂θi∂θj
(2.56)
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Figure 2.3: Cartoon showing the distortion of a resolved unit circle source by the differential
deflection of light rays with slightly different paths.

A(~θ) =
(
1− κ(~θ)− γ1(~θ) −γ2(~θ)
−γ2(~θ) 1− κ(~θ) + γ1(~θ)

)
, (2.57)

where, dropping the explicit dependence upon position for brevity, we have introduced

the convergence

κ ≡ 1
2

(
∂2Ψ

∂x2
+
∂2Ψ

∂y2

)
, (2.58)

and the two components of shear

γ1 ≡
1

2

(
∂2Ψ

∂x2
− ∂

2Ψ

∂y2

)
(2.59)

γ2 ≡
∂2Ψ

∂x∂y
, (2.60)

which in practice are all of the same order of magnitude. Comparing equations (2.53)

and (2.58), we see that the value of the convergence is no less than the ratio κ of the sur-

face mass density to the critical density, justifying our use of the same Greek letter. Our

definition of the weak lensing regime, κ≪ 1, is therefore equivalent to a requirement

that the lens equation indeed be a linear mapping, with negligible second-order terms

(of order κ2, γ2i ) in its Jacobian.

A cartoon showing the effect of gravitational lensing on a circular object is displayed

in figure 2.3. To see the effect on a more realistic galaxy image, see figure 4.43. However,

the two operations are easily interpreted by rewriting equation (2.57) as

A = I − κ
(
1 0

0 1

)
−
√
γ21 + γ

2
2

(
cos(2φ) sin(2φ)

sin(2φ) − cos(2φ)

)
. (2.61)

We see that the convergence produces an isotropic enlargement of the image. Since

gravitational lensing conserves surface brightness, this enlargement also increases the
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total observed flux from an object by a magnification factor

µ =
1

detA =
1

(1− κ)2 − γ21 − γ22
. (2.62)

By Taylor expansion in the weak lensing limit, this becomes

µ ≈ 1 + 2κ . (2.63)

Although the convergence and magnification effects are very closely linked to the mass

distribution of the lens, they are difficult to measure in practice. The usual method (e.g.

Schneider et al. 2000) attempts to find spatial variations in the observed number density

of a magnitude-limited sample of galaxies. However, even in ideal observing conditions,

gravitational lensing changes the observed galaxy density in a complicated way that

depends upon the slope of the number counts (e.g. Schneider 2002). Magnification bias

pushes faint galaxies into the catalogue, but competes with the stretching of solid angles

that dilutes the observed density of galaxies in a fixed region. Gray et al. (2002) observed

in the near-IR where the slope is steeper, but there the total number density is lower, and

they found no overall benefit.

The two components of shear are easier to observe. Made from the trace-free part of

the Jacobian matrix, they stretch the image in two different directions: γ1 along the x-

axis and γ2 at 45◦ from it. They can be combined to form a convenient complex quantity

(Blandford et al. 1991)

γ ≡ γ1 + iγ2 = |γ|e2iφ , (2.64)

where the modulus represents the amount of shear and the phase represents its direc-

tion. Differentiating equation (2.44), it can be seen that the shear induced around a point

mass lens is everywhere tangential and falls off in magnitude as γ ∝ 1/r2. A circular

source is thus mapped into an elliptical image, where φ ∈ [0, π) is the angle from the

x-axis to the major axis of the ellipse. Defining the new major and minor axes

a =
1

1− κ− |γ| (2.65)

b =
1

1− κ+ |γ| , (2.66)

we can measure its ellipticity

ε ≡ a
2 − b2
a2 + b2

. (2.67)

To measure shear in practice, we do not even need to assume that galaxies are in-

trinsically circular; just that their intrinsic orientations are random. In this case, stack-
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ing many galaxy images in the absence of lensing will produce a combined object that

does have concentric, circular isophotes. Galaxies’ own intrinsic orientations cancel, and

〈ε〉 = 0 (but see the discussion concerning possible intrinsic alignments of neighbouring

objects in §3.3.6). If the galaxies had instead been distorted by a (smooth) shear field,

nearby objects become coherently elongated in the same direction. The result of stack-

ing these images is an elliptical profile that depends only upon the local shear field, the

average radial profile of the galaxies and their ellipticity distribution. This information

is contained within the shear susceptibility

P γ ≡ 〈ε〉
γ
, (2.68)

which we shall return to discuss in more detail in section §3.2.3. For now, we simply state

that it is a constant scalar that can be measured. Note also that because of the symmetry

of an ellipse, both ε and γ rotate like 2-spinors rather than vectors.

2.2.3 Dark matter mapping

From an observed shear field, or pattern on the sky, it is possible to recover the con-

vergence field: which is a projected mass map of both baryonic and dark matter. This

can therefore bridge the gap between observation, which can otherwise detect only lu-

minous objects, and theory, which typically deals only with mass. Many known fore-

ground clusters have been mapped with lensing, to determine their overall mass and

structure (e.g. Joffre et al. 2000; Dahle et al. 2002). Kaiser & Squires (1993) developed

the first shear-inversion technique for creating two-dimensional mass maps. Since both

shear and convergence are second derivatives of the lensing potential Ψ(~θ), they are re-

lated simply in Fourier space. One merely needs to represent the two differentiations

in Fourier space by multiplication then division by different factors of θ, then transform

back to real space. The end result (Bartelmann & Schneider 2001) is

κ
(
~θ
)
=

∫

R2

ℜ
[
D
(
~θ− ~ϑ

)
γ
(
~ϑ
)]

dϑ2 + κ0 , (2.69)

where

D
(
~ϑ
)
≡ ϑ

2
2 − ϑ21 +2iϑ1ϑ2

|~ϑ|4
=

−1
(ϑ1 − iϑ2)2

(2.70)

and κ0 is an unknown constant of integration, known as the mass sheet degeneracy: a

shear field is unchanged by a constant mass. This is a concern only for observations with

a small field of view, where the data can only be integrated over a small region of R2.

In this case, use of magnification data can break the degeneracy. In fact, Schneider et al.

(2000) showed that magnification data can provide more accurate measurements of the

radial profiles of clusters than shear information, but both are required to determine the
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total mass. Large modern cameras overcome the problem using only the observed shear

field, by extending data to regions so far from the cluster that there is no foreground

mass. The outer regions of such a mass map can thus be used to constrain the zeropoint

κ0.

It is never desirable to have to take Fourier transforms of observational data. The

edges of the CCD, and missing data behind saturated stars, typically create a compli-

cated window function. Several other techniques have been developed to avoid Fourier

transform, and the most widespread technique involves the aperture mass

Map(θ) ≡
∫

d2~ϑ Q
(
|~ϑ|;θ

)
γt

(
~ϑ
)
, (2.71)

where γt is the component of shear tangential to the direction ~θ from the cluster centre

(Schneider & Bartelmann 1997). This calculates the projected mass density κ within

circular window functionsQ(ϑ) on the sky that are narrow in Fourier space. As we shall

see in section §2.2.7, replacing the tangential components of shear with those at 45◦ from

the line to the centre of the cluster, will provide an estimate of noise

M⊥(θ) ≡
∫

d2~ϑ Q
(
|~ϑ|;θ

)
γr

(
~ϑ
)
. (2.72)

The window function Q(|~ϑ|;θ) can be matched to optimise detection or parametriza-

tion of particular cluster profiles. However, almost equally good results are obtained

(Bartelmann, King & Schneider 2001) using a simple Mexican hat filter

Q(ϑ;θ) =
6

πθ2
ϑ2

θ2

(
1− ϑ

2

θ2

)
H(θ− ϑ) , (2.73)

where θ defines an angular scale of the aperture and the Heaviside step function H

truncates the weight function at high scales.

Weak lensing measurements of cluster masses have even been used to calibrate other

techniques, including the x-ray mass-temperature relation and cluster mass/light ratio

biasing (Huterer & White 2003; Gray et al. 2002; Hoekstra et al. 2002b; Smith et al. 2003).

Maps of untargetted regions of the sky, or wider surveys, can be used to search for previ-

ously unknown clusters and to compile mass-selected catalogues. Miyazaki et al. (2002)

used the Kaiser & Squires (1993) inversion method to identify mass peaks, and Marshall,

Hobson, Gull, & Bridle (2002) demonstrate the effectiveness of maximum entropy tech-

niques to identify structures in such maps, using criteria set by Bayesian evidence. The

Map statistic (Schneider 1996, 2002) has been applied successfully to find the locations

and masses of clusters in several surveys (e.g. Hoekstra et al. 2002a; Erben et al. 2000).

Two clusters have also been found purely by weak lensing mass maps, and spectroscop-

ically confirmed by Wittman et al. (2001, 2003).

White et al. 2002 argue that using any detection method, a complete mass-selected
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cluster catalogue from 2D lensing data would require a high rate of false-positive detec-

tions, since the prior probability is for them to be anywhere throughout a given survey.

This has been avoided in practice by secondary cross-checks of the lensing data with

spectroscopy, deep x-ray temperature or SZ observations. However, this does make it

harder to resolve the debate on the possible existence of baryon-poor “dark clusters” (e.g.

Dahle et al. 2003). These are a speculative population of clusters which would be phys-

ically different to and absent from the catalogues of optically or x-ray selected clusters.

Remaining dark-lens candidates (Erben et al. 2000; Umetsu & Futamase 2000; Miralles

et al. 2002) have currently been eliminated as chance alignments of background galaxies

(or possibly associations with nearby ordinary clusters Gray et al. 2001; Erben et al. 2003).

If many other candidates could be found in high S/N weak lensing maps, they would

present a challenge to current models of structure formation, and need to be accounted

for in estimates of Ωm; but they would be unique laboratories to decipher the nature of

dark matter.

Cluster counts, and the quantitative study of peak statistics are one of the most

promising routes to breaking degeneracies in the estimation of cosmological parameters

(Bernardeau, van Waerbeke & Mellier 1997; Cooray, Hu & Miralda-Escudé 2000; Munshi

& Jain 2001; Schneider & Lombardi 2003). Furthermore, studying well-resolved groups

and clusters individually, rather than statistically, will lead to a better understanding of

astrophysical phenomena, the nature of dark matter and the growth of structure under

the gravitational instability paradigm (e.g. Dahle et al. 2003).

2.2.4 Cosmic shear statistics

The shear field in wide, untargetted observations can also be examined statistically. As

a light ray threads its way through the large scale structure of the universe, it will be

deflected by a succession of many small mass concentrations. As long as each lens is ge-

ometrically thin, well-separated from its neighbours, and creating only small deflection

angles, the net shear may be calculated as the linear superposition of many deflections.

These all deflect the light rays by an amount which depends how close they are to being

half-way between the source and the observer. This efficiency of lenses is described by

the lensing weight function

g(χ) = 2

∫ χh

χ
η(χ′)

D(χ)D(χ′ − χ)
D(χ′)

a−1(χ) dχ′ , (2.74)

where χ is a distance in comoving coordinates (in which the power spectrum is mea-

sured),Ds are angular diameter distances, (with the extra factor of a−1 converting these

into comoving coordinates), and η(χ) is the distribution function of source galaxies in

redshift space, normalised so that
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∫ χh

0
η(χ) dχ = 1 . (2.75)

The limits on these integrals extend all the way to the comoving horizon χh, at z =∞.

Because the angular diameter distance evolves slowly with redshift beyond z ≃ 1, it

turns out that the results depend only weakly upon the shape of the function η(χ). Since

we also want to use sources that are as far away and as faint as possible (because the

lensing signal adds cumulatively along a light path), this function is not well known

(particularly after the typical exclusion of galaxies based upon their size and ellipticity as

well as their magnitude). It is therefore usual to approximate η(χ) with the assumption

that all the sources lie in a single sheet at comoving radius χs that corresponds to the

median redshift zs of the true distribution, so that η(χ) ≡ δ(χ − χs). In this case, the

lensing weight function is bell-shaped

g(χ) = 2
r(χ)r(χs − χ)
r(χs)

(2.76)

and has its maximum at z ≈ zs/2. Ongoing deep redshift surveys will help to constrain

it better, but for this analysis we shall need to propagate errors on the median redshift

of the sources through the analysis.

We will therefore use the projected and weighted effective mass distribution

κeff =

∫ χs

0
W (χ′)δ(χ′)dχ′ , (2.77)

with

W (χ) =
3Ωm0H

2
0

2

DA(χ)

a(χ)

∫ ∞

χ
fs(χs)

DA(χs − χ)
DA(χs)

dχs . (2.78)

Using Limber’s equation in Fourier space (Kaiser 1998) to relate the three dimensional

density field to its projection onto the sky, we can obtain the convergence power spectrum

Cκℓ (ℓ) =
9

16

(
H0
c

)4
Ω2m

∫ χh

0

[
g(χ)

D(χ)

]2
P

(
ℓ

r
,χ

)
dχ . (2.79)

Here a is the expansion parameter, andH0 and Ωm are the present values of the Hubble

constant and matter density parameter, respectively.

Conveniently, the two-point statistics of the convergence and shear fields are iden-

tial in the weak lensing limit (Bartelman & Schneider 2000). We can therefore directly

relate the dark matter distribution to the previously-derived convergence power spec-

trum (equation 2.79) to the observable shear power spectrum,

C
|γ|
ℓ (ℓ) = C

κ
ℓ (ℓ) . (2.80)

In fact, it will be easier in practice to measure the real-space correlation functions of shear
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Figure 2.4: Positive contributions to the three shear-shear correlation functions from the relative
orientation of galaxy pairs. Negative contributions arise when one of the pair is rotated through
90◦.

between galaxy pairs, rather than the Fourier space power spectrum. A typical survey

image will contain bright foreground stars or ghost images, cosmic rays and gaps or

other effects near the edges of a CCD. Galaxies in these regions need to be excluded

from an analysis, and the observed shear field will contain many holes: a horrible win-

dow function in Fourier space. Since shear is complex, there are two observable real

quantities, and we shall use the shear-shear correlation functions

C1(θ) ≡
〈
γ̂r1 (~r) γ̂

r
1

(
~r+ ~θ

)〉
(2.81)

C2(θ) ≡
〈
γ̂r2 (~r) γ̂

r
2

(
~r+ ~θ

)〉
, (2.82)

from which can be formed

ξ+(θ) ≡ C1(θ) +C2(θ) =
1

2π

∫ ∞

0
Cγℓ (ℓ) J0(ℓθ) ℓdℓ (2.83)
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ξ−(θ) ≡ C1(θ)−C2(θ) =
1

2π

∫ ∞

0
C
|γ|
ℓ (ℓ) J4(ℓθ) ℓdℓ (2.84)

plus an additional cross-correlation term between galaxy pairs, 〈γ1γ2〉+ 〈γ2γ1〉, which

is trivially zero if the universe has no handedness. We have introduced rotated shear

estimators γ̂r1 and γ̂r2 , which are the projection of the shear γ onto the line between a pair

and at 45◦ from it. These are demonstrated in figure 2.4. We can form a shear estimator to

directly sample to local mass distribution from the observed shape of every background

galaxy in an image (see section §3.2.3). We shall then bin the shear signal on different

angular scales in order to reduce observational noise.

Making use of the orthogonality of Bessel functions

∫ ∞

0
Jn(sθ) Jn(tθ) θdθ =

δ(s− t)

t
, (2.85)

we can invert relations (2.83) and (2.84) (Schneider et al. 2002) to express the power spec-

trum directly in terms of the measurable correlation functions

C
|γ|
ℓ (ℓ) =

∫ ∞

0
[ξ+(θ) J0(ℓθ) + ξ−(θ) J4(ℓθ)] θdθ . (2.86)

2.2.5 Expected signal

Figure 2.5, reproduced from Jain, Seljak & White (2000) shows an example shear field

that we could expect to observe. It was calculated by ray-tracing through an n-body

simulation of large-scale structure, recording the deflections and magnifications due to

structures along each line of sight (the displayed plot is actually calculated in a simulated

SCDM rather than ΛCDM universe). Clusters and groups of galaxies can be identified

as the coherent tangential structures, where the shear increases towards to centre of the

mass overdensity, as described by the derivative of equation (2.44). A greyscale map of

the projected mass density in the top-right corner of this particular map can be seen in

figure 6.14.

Many examples of galaxy pairs aligned in the specific configurations of shear-shear

correlation functions can be picked out by eye on various scales in the shear map of fig-

ure 2.5. For instance, pairs of galaxies closer together than the typical scale of clustering

tend to be oriented in the positive form of both C1(θ) and C2(θ). However, galaxies sep-

arated by larger distances tend to lie around the outskirts of clusters, and the negative

form of C2 becomes dominant. This is reflected in the predicted forms of shear-shear

correlation functions calculated from the non-linear mass power spectrum according to

equation (2.79) and shown in figure 2.6: C2 does indeed become negative at large sepa-

rations (the absolute value is plotted).
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Figure 2.5: A simulated shear field, 60′× 20′, reproduced from Jain, Seljak & White (2000). Each
vector shows the amplitude and direction of shear, calculated by raytracing through an n-body
simulation of large-scale structure and summing the gravitational light deflection from mass
overdensities along each line of sight. Clusters and groups can be identified as those locations
around which the shear field is tangential and increasing. Mass underdensities and voids are
surrounded by radial shear fields.

2.2.6 Shear variance in cells

By analogy with the definition of σ8, cosmic shear results are frequently expressed as the

variance of the shear field σ2γ ≡ 〈 |γ|2 〉 inside circular cells on the sky. For a top-hat cell

of radius θ, this is related to the shear correlation functions by

〈
|γ|2

〉
=
2

π

∫ ∞

0
C
|γ|
ℓ (ℓ) [J1(ℓθ)]

2 ℓdℓ (2.87)

≃ 2

θ2

∫ θ

0
ξ+(ϑ) dϑ , (2.88)

where we have used a small angle approximation. This alternative measurement is now
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Figure 2.6: Predicted form of the two two-point shear-shear correlation functions as a function
of separation between galaxy pairs, reproduced from Bacon et al. (2002). C2(θ) becomes negative
at large separations, so the absolute value has been plotted for the sake of clarity. The four lines
in each case apply to different cosmological models discussed by Peacock & Dodds (1994). The
curve for “standard” SCDM is higher because it is normalised to COBE data, while the rest are
normalised to x-ray selected cluster counts.

used only for historical reasons, because it offers no new information or perspective,

and the integration merely acts to strongly correlate measurements on different angular

scales.

In real observations, data is typically not available on all scales, particularly at very

small θ. If this is omitted from the intergral (2.88), the strong covariance pulls down

the calculated values of σ2γ on all scales. This calculation will therefore be delayed until

cosmological parameters can be fitted from the shear correlation function data. The best-

fit cosmological model will then be susbstituted on the small scales where real data is

not available.
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2.2.7 E-B decomposition

A vector field can be split into two components called, by analogy with electromag-

netism, E- and B-modes. These correspond to the vector gradient and curl of a scalar

field and are illustrated in figure 2.7. As seen graphically in figure 2.5, and as is appar-

ent from equation (2.44), gravitational lensing produces only E-modes. The presence

of any B-modes in observational data is therefore a useful diagnostic of noise or sys-

tematic errors in the data reduction and analysis process. Ideally, a survey’s B-mode

signal should be zero. But if it is not, it can be added in quadrature to the error bars

on the E-mode signal (van Waerbeke et al. 2001). If, as commonly assumed, systemat-

ics effects would affect E- and B-modes equally, a non-zero B-mode signal should also

be subtracted from the E-mode signal itself. Schneider, van Waerbeke & Mellier (2002)

found that a very small B-mode contribution can induced by second order effects due to

multiple light deflections by several lenses clustered along a line of sight, but this occurs

at a level well below current sensitivities.

E- and B-modes correspond to patterns within an extended region on the sky, and

cannot be separated locally; this unfortunately requires the integration of the shear cor-

relation functions over a range of angular scales. As was the case for shear variance, this

data is typically not available on all necessary scales, so the calculation can be performed

only up to an unknown constant of integration. This constant mirrors the mass-sheet de-

generacy. In this case, a constant shear within a finite field (i.e. a constant mass gradient)

can not be uniquely split into E- and B-mode components.

The variance of the aperture mass provides a convenient way to separate the two

components, as a function of the scale size of the weight function. Crittenden et al. (2001)

showed that Map (equation (2.71)) contains only contributions from the E-mode signal

and thatM⊥ (equation (2.72)) contains only the B-mode signal. Although the ensemble

average of Map vanishes, 〈Map〉 = 0, Schneider et al. (2002) derived expressions for the

variance of these statistics. Using the Mexican hat weight function from equation (2.73),

〈
M2ap

〉
(θ) =

1

2

∫ 2θ

0

dϑϑ

θ2

[
ξ+(ϑ)T+

(
ϑ

θ

)
+ ξ−(ϑ)T−

(
ϑ

θ

)]
(2.89)

〈
M2⊥

〉
(θ) =

1

2

∫ 2θ

0

dϑϑ

θ2

[
ξ+(ϑ)T+

(
ϑ

θ

)
− ξ−(ϑ)T−

(
ϑ

θ

)]
, (2.90)

where

T+(x) =
6(2− 15x2)

5

[
1− 2
π
arcsin

(x
2

)]

+
x
√
4− x2
100π

(120 + 2320x2 − 754x4 + 132x6 − 9x8) (2.91)
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Figure 2.7: Gravitational lensing produces only E modes, with a positive signal around mass
overdensities, and a negative signal around mass underdensities. The clustering of mass in the
universe determines on which scales their combination is positive and on which scales it is nega-
tive. Gravitational lensing does not generally create B modes in the shear field, and their presence
can therefore be used as a diagnostic of systematic errors in observational data.

T−(x) =
192

35π
x3
(
1− x

2

4

)7/2
(2.92)

for x < 2 and T+(x) = T−(x) = 0 for x ≥ 2.
The variance ofMap is related to the shear power spectrum by

〈
M2ap

〉
(θ) =

288

π

∫ ∞

0
Cγℓ (ℓ)

[J4(ℓθ)]
2

ℓ4θ4
ℓdℓ . (2.93)

Unfortunately, the integrals in equations (2.89) and (2.90) are numerically unstable when

performed on binned data like that in chapter 3. The function T+(x) places a lot of

weight upon the value of the correlation functions at small angular scales. Since this is

changing rapidly, the end result os highly sensitive to the spacing of the bins; and be-

cause of small-scale effects like overlapping galaxy isophotes, the values at very small ϑ
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are frequently unreliable in real data. Performing the integrals without this data is usu-

ally assumed to be equivalent to adding an unknown constant of normalisation to both

〈M2ap〉 and 〈M2⊥〉 (van Waerbeke et al. 2003; Hoekstra et al. 2002). However, this is not the

case: since the weight functions T±(x) are so complicated, the unknown normalisation

will actually vary as a function of θ.

We shall therefore prefer to use an alternatively weighted pair of correlation func-

tions

CE(θ) ≡ C1(θ) + 2

∫ ∞

θ

(
1− 3θ

2

ϑ2

)
ξ−(ϑ)
ϑ

dϑ (2.94)

CB(θ) ≡ C2(θ)− 2
∫ ∞

θ

(
1− 3θ

2

ϑ2

)
ξ−(ϑ)
ϑ

dϑ . (2.95)

which also separate the shear field into E- and B-modes (Crittenden et al. 2001; Pen, van

Waerbeke & Mellier 2002). The weighting function in equations (2.94) and (2.95) is wider

in θ than it is in equations (2.89) and (2.90), and again extends to scales on which data will

not be available from a real survey. This time, however, the missing data is on very large

scales (i.e. larger than the width of the field of view), and in this regime, the signal is both

of low amplitude and clean from most systematics. The truncation of the integrals will

once again introduce an unknown function that can be added to CE(θ) and subtracted

from CB(θ). Assuming a ΛCDM universe, and for truncation at 16′, as will be the case

with our major survey, this function is roughly constant at ∼ 2× 10−05. However, since

the amplitude normalisation of all these statistics is basically ill-constrained from the

data, cosmological parameter fitting will be performed directly upon C1(θ) and C2(θ)

correlation function. In a similar manner to the calculation of shear variance in cells, the

E- and B-mode decomposition methods will only be used after the fact, as a consistency

check for contamination by observational systematics.
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2.3 Scientific aims of this thesis

• Outline the controlled observational techniques and careful data reduction meth-

ods necessary for weak lensing measurement.

• Acquire data from two independent but state-of-the-art telescopes and measure

cosmological parameters Ωm, the current density of mass in the universe, and σ8,

the normalization of the amplitude of the matter power spectrum on 8 Mpc scales.

The independent instrumental systematics from the two data sets will provide fur-

ther information on the level of instrumental systematics.

• Manufacture detailed and morphologically accurate simulations of astronomical

images, with which to test and calibrate galaxy shape measurement techniques,

and to assess the impact of observational systematics.

• Investigate the limitations of current techniques. Quantify the prospects for future

shear measurement methods and the next generation of surveys using custom-

built telescopes.
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2.4 Outline of this thesis

This thesis is organised in the following way:

Chapter 3 presents the results from cosmic shear surveys with both the Keck and

William Herschel Telescopes. The survey strategies, instruments and observing condi-

tions are described in section §3.1; section §3.2 describes the shear measurement method.

The careful steps taken to control systematic errors are outlined in section §3.3. Mea-

surements of the shear-shear correlation function (2.81) on various scales are presented

in section §3.4 and, by fitting theoretical models, constraints are obtained upon cosmo-

logical parameters σ8 and Ωm.

Chapter 4 introduces the “shapelets” formalism for advanced image analysis and

the parametrization of arbitrary galaxy morphologies. Section §4.1 discusses why this

is important. The functional form of the shapelet basis functions is derived in §4.2.

Section §4.3 expresses the manipulation of images as co-ordinate transforms in polar

shapelet space, and a series of estimators linearly dependent upon or invariant un-

der these transforms are constructed. These include galaxy flux, centroid, size and

higher-order morphology indices. Section §4.4 describes an improved implementation

of the shapelet decomposition, taking into account the practical problems of dealing

with noise, pixellisation and seeing in real data. Section §4.5 discusses ways to optimise

the decomposition for maximum signal recovery and data compression.

Chapter 5 applies shapelet methods to manufacture simulated astronomical survey

images. Section §5.1 discusses the reasons for doing this with shapelets, and §5.2 de-

scribes the method. Statistical tests in §5.3 demonstrate that the simulations have simi-

lar properties to the HDFs, and that the galaxies they contain have realistic morpholo-

gies. We find good agreement between simulations and the real HDF galaxies for mea-

sures such as the size-magnitude distribution, ellipticity, concentration, asymmetry and

clumpiness indices.

Chapter 6 describes the prospects for future cosmic shear surveys. Short-term and

long-term goals are suggested in §6.1. Specific attention is paid in §6.2 to the develop-

ment of the planned Supernova/Acceleration Probe (SNAP), a space-based imager for

which detailed engineering specifications are already available. The shapelet-based im-

age simulations are used once again in §6.3, to make quantitative predictions for the

precision of shear recovery under various observing conditions, instrument configura-

tions and survey strategies of the SNAP satellite. An outlook for future cosmic shear

surveys is presented in section §6.4.

Chapter 7 draws conclusions and contains a summary of the thesis.
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Current cosmic shear results

3.1 Data acquisition

3.1.1 Survey strategy

The validity of any cosmic shear result depends sensitively upon the treatment of sys-

tematic errors and the control of observational biases. Almost all systematic effects act

to increase the observed correlations between galaxy shapes, and thus mimic cosmic

shear. To help ascertain the level of our systematics, we shall compare cosmic shear ob-

servations taken with independent instruments. We shall present data from the Echelle

Spectrograph and Imager (ESI) on the 10m Keck II telescope in Hawaii. This is an off-

axis imager at Cassegrain focus, with a distortion corrector. We shall present data from

the Wide Field Camera (WFC) mounted at prime focus on the 4.2m William Herschel

Telescope (WHT) on La Palma. This has a wide field of view but also has relatively large

optical distortions. We also attempted to acquire data from the Deep Imaging Multi-

Object Spectrograph (DEIMOS) at Nasmyth focus on Keck, but were defeated by poor

observing conditions.

We have adopted a “pencil-beam” survey strategy for both the Keck and WHT ob-

servations, acquiring narrow but deep (z ≃ 1) images on the many lines of sight shown

in figure 3.1. Field locations are all separated by more than 2◦, to sample independent

structures, and thus minimise uncertainties from ”cosmic” (sample) variance. They were

also chosen in a quasi-random fashion, without regard to the presence or absence of

mass concentrations, in order to obtain a representative sample of density fluctuations

41
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Figure 3.1: The sky location of the cosmic shear fields in the William Herschel Telescope and
Keck surveys. Galactic latitudes of 0◦, ±20◦, ±40◦, ±60◦ and ±80◦ are shown as contours. The
Galactic poles are marked, and the Galactic centre shown as a cross.

in the universe. Field locations were initially placed in a grid of coordinates spanning

the accesible RA range, and at Galactic latitudes tuned to ensure ∼50 unsaturated fore-

ground stars in each Keck field, or ∼200 in each WHT field. These stars will be used

to measure the Point-Spread Function (PSF) or “seeing” across each image. The STScI

Digitised Sky Survey was finally used to find an appropriate field near each set of co-

ordinates, avoiding stars brighter than R < 11 in the APM (Automatic Plate Measuring

machine) and GSC (Guide Star) catalogues, to prevent large areas of saturation or ghost

images.

As a final constraint, every field was observed within 20◦ of zenith. This minimises

image smearing due to atmospheric refraction: particularly above Keck, which does

not have an Atmospheric Dispersion Corrector (the excellent image quality described

in section §3.1.3 confirms that this is not a serious limitation at low airmass). For both

telescopes, the constraint also minimises any image distortion associated with telescope

or instrument flexure (§3.3.4).

Since gravitational lensing is achromatic, our observations could be made in any

photometric band. R and I bands afford the most efficient deep imaging in a given ex-

posure time, but fringing in the I band with the WFC CCDs (Carter & Bridges 1995)

made it most convenient to consistently image in R with both telescopes. The WHT

R-band is a standard Harris R filter; the Keck R-band is a specially constructed filter

with similar throughput and spectral range (λ̄ = 6657Å, effective FWHM= 1200Å). The
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Figure 3.2: Median reddening-corrected R-band magnitude of the galaxies in the final shear
catalogue for each Keck field, and a random subset of the WHT fields (analysis by David Bacon).
The median magnitude of galaxies in the combined survey is R=23.6.

slightly different galaxy redshift distribution probed by this filter will be taken into ac-

count in our estimates of the source redshift uncertainty.

3.1.2 Survey depth

Bacon, Refregier & Ellis (2000) demonstrated that the expected level of cosmic shear sig-

nal (see §2.2.5) could be most efficiently measured on the WHT using 1 hour exposures.

Such images reach a limiting magnitude of R = 25.8 for a point source detected at 5σ.

After various selection criteria (see §3.2.2), we keep ∼ 16.5 resolved galaxies per square

arcminute in the final WHT galaxy catalogues. Precise photometric calibration using

standard stars, and including a correction for reddening by galactic dust performed by

David Bacon, shows that these have a median magnitude of R = 23.5 ± 0.2 (see fig-

ure 3.2). According to e.g. Cohen et al. (2000), this corresponds to a median source red-

shift of zs = 0.8± 0.08.
Any shallower a survey would face the danger of contamination by galaxies’ intrin-

sic alignments (see discussion in §3.3.6). Longer exposure times would offer diminish-

ing returns, because the shapes of fainter and therefore smaller galaxies are seriously

degraded by a ground-based PSF. Even with a deeper survey, such galaxies would pro-

vide noisy and unreliable shear estimators. We therefore aimed to match this depth with

our Keck survey, and to probe the same redshift range. An exposure time of 10 minutes
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successfully reaches the same S/N of 5 for the detections of point sources at R = 25.8.

However, the better seeing during our Keck observations (see figure 3.3) results in a

slightly fainter magnitude limit for the selected objects than those from the WHT sur-

vey. This is entirely acceptable, as we can compare results by scaling the predictions

according to the equation σγ ∝ z0.8s (e.g. Bacon, Refregier & Ellis 2000).

The final object catalogue from Keck data contains∼ 27.5 resolved galaxies per square

arcminute, with a median magnitude of R ≃ 24.4± 0.2. The distribution of magnitudes

in the catalogue extends substantially fainter than this median, with the galaxy count as

a function of magnitude dropping to 50% of maximum at R = 25.2. According to Cohen

et al. (2000), our median magnitude of R = 24.4 corresponds to a median source redshift

of zs ≃ 1.0± 0.1. This error may be subject to additional sample variance, because the

number of measured redshifts in Cohen et al. (2000) is relatively small. We shall there-

fore quote our redshift error separately to other statistical errors, for comparison with

future redshift surveys.

3.1.3 Keck telescope data

We have acquired 0.6 square degrees of imaging on the Keck telescope. This was so

limited by the size of our R-band filter, which restricts the field of view for each field to

8′ × 2′. However, the great advantage which Keck presents for measuring cosmic shear

is its speed in achieving the necessary depth. The fast data acquisition rate allowed us

to obtain 173 independent fields, thus minimising the contribution to noise by cosmic

variance. The observations were performed during 6 nights during November 2000 and

May 2001, as a good seeing override on an independent spectroscopic programme.

Three 200s exposures were taken for each survey field, each offset by 5′′. This enabled

a continual monitoring of astrometric distortions within the telescope/camera, cosmic

ray removal, and lower overheads in the event of inclement weather. On-the-fly updates

of PSF size and stellar ellipticity, using our SEXTRACTOR-based (Bertin & Arnouts 1996)

software at the telescope, allowed the occasional exposures with poor seeing or telescope

tracking to be retaken when conditions improved. The multiple mirror segments of

the telescope were refocused, and observations of standard stars were taken, several

times per night. All the fields were observed as they passed near the meridian, in order

to minimise image distortion from the atmosphere and from telescope or instrument

flexure. But they were taken no closer than 5◦ to zenith. This reduced the rate of sky

rotation, and minimised potential tracking errors on this alt-az telescope.

The median seeing for the observations was 0.58′′, with 75% in seeing better than

0.7′′. Figure 3.3 records the seeing values for all fields. Furthermore, the rms stellar

ellipticity for the images was only σe∗ = 0.035. This excellent data quality will assist PSF

correction (§3.3.3), and yield a low level of noise on shear measurement. ESI’s pixel size

of 0.153′′ is also considerably finer than that for WHT, allowing a better sampling of the
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Figure 3.3: Seeing FWHM in all survey fields. Keck data are shown in white; WHT data are
shown as shaded. No data with seeing worse than 1” is used. A combined survey from both
telescopes has a median seeing of 0.70”.

galaxy images. The combination of these properties will enable the measurement of the

shapes of a higher number density of galaxies and of closer pairs of galaxies. Aside from

its relatively small field of view, Keck is therefore an ideal telescope for weak lensing

measurements.

The data were then reduced, with care taken to remove background gradients, fring-

ing, and other effects that could affect the measurement of objects’ shapes. The overscan

region of the ESI CCD proved the most accurate source for bias subtraction. Flat fielding

was performed separately for each night’s data, using an image created by stacking all

of the data from that night, with sigma-clipping to remove objects. Sky- or dome-flats

were found to be insufficiently accurate for this purpose, due to the slight differences

in colour response across the CCD during twilight observations. Fringing was already

below the level of background noise on Keck images and did not need to be removed.

The three dithered exposures for each field were then divided by their median val-

ues, to normalise their background levels. They were re-aligned, using bright stars in

the image as reference points; no rotation of the field was found to be necessary, and lin-

ear interpolation between adjacent pixels was used to implement sub-pixel shifts. The

exposures were then stacked, using 3σ-clipping to remove cosmic rays and cosmetic de-

fects. Their combined photometric zeropoints were then calibrated using observations

of standard stars, and corrected for galactic dust aborption by David Bacon. A section

from one reduced Keck image is shown in figure 1.1.
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3.1.4 William Herschel Telescope data

We have acquired 4 square degrees of imaging with the William Herschel Telescope. To

the eight 8′ × 16′ WHT images with which a cosmic shear signal was first detected by

Bacon, Refregier & Ellis (2000), we have added 52 new 16′ × 16′ images. These were ob-

tained over 16 nights during June 2000, June 2002 and August 2002, and take advantage

of a second CCD that had been added the Wide Field Camera (WFC) by that time. The

pixel size of both CCDs is 0.24′′.

For each survey field we took four 900s exposures, each dithered by a few arcseconds

from the last. Once again, this tactic enabled the continual re-calibration of optical dis-

tortions in the telescope and camera, the removal of cosmetic defects, and the constant

moitoring of observing conditions. Observations of standard stars were taken regularly

throughout each night. The median seeing from all observations was 0.72′′, and no data

is used with seeing worse than 1′′. The rms stellar ellipticity, averaged across survey

fields, was σe∗ = 0.05.

During data reduction, variously stacked combinations of the data from each night

were used for both bias subtraction and flat fielding. A fringe frame was also compiled

from all of the exposures in each night, and the multiple of that frame which minimised

fringing was subtracted from each image. This technique reduced fringing to a negligi-

ble level < 0.1% of the rms background noise. The exposures were then realigned and

stacked using the same algorithm as described for the Keck data.

It is not precisely clear how signals from the early, half-sized WHT fields ought to be

weighted with respect to those from the later and larger WHT fields, because the ratio of

galaxy pairs from each data set varies as a function of the pair separation. However, the

low number of smaller fields means that they have little impact upon the final result, so,

for simplicity, we weight their contributions 1:2 on all scales.

3.2 Shear measurement

3.2.1 Shear estimators from galaxy shapes

To measure the theoretical framework of correlation functions and cosmological param-

eters described in chapter 2, we shall need to measure the observed shear field at many

points throughout our survey. As we shall find below, it is possible to calculate a shear

estimator γ̂ from the shape of every resolved galaxy. These estimators will all be very

noisy, both because of observational noise, and the intrinsically elongated morpholo-

gies of real galaxies. Indeed, it will turn out that the latter effect is the most important:

even in perfect observing conditions, the typical elongations induced by weak gravita-

tional lensing are an order of magnitude smaller than the scatter of ellipticities already

present! However, if the intrinsic orientations of galaxies are assumed to be random (see

the discussion in section §3.3.6), by averaging over the shapes of many galaxies, we can
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therefore ensure that their intrinsic ellipticities cancel out. Only the coherent distortions

created by gravitational shear then remain. We shall therefore require an unbiased shear

estimator γ̂ that can be calculated from galaxy shapes. The average shear estimator for a

sample of galaxies 〈γ̂〉must be proportional to the true local shear γ, and, if the galaxies

are unlensed, the average shear estimator must be zero 〈γ̂〉 = 0.
The standard shear measurement method for the past decade has been the publicly

available IMCAT code introduced by Kaiser, Squires & Broadhurst (1995; hereafter KSB),

plus a variety of later additions and refinements (e.g. Luppino & Kaiser 1997; Hoekstra

et al. 1998). It has been tested upon simulated ground-based data by Bacon et al. (2001)

and Erben et al. (2001), and recovers input shear with an accuracy of approximately

10%. This is quite sufficient for the current generation of surveys, and we shall use this

method to analyse our own data in section §3, including an ad hoc shear calibration fac-

tor of (0.85 ± 0.04)−1 that was found to be necessary in the implementation of Bacon

et al. (2001). Other sources of error, including “cosmic” (sample) variance and statisti-

cal errors due to the finite number density of resolved background galaxies still dom-

inate current results. However, the underlying mathematics of KSB is fundamentally

ill-defined and is unstable for faint and small galaxies (e.g. Kuijken 1999; Bernstein &

Jarvis 2002; van Waerbeke et al. 2002). New measurement methods will soon be required

in order to tighten the constraints upon cosmological parameter from the next genera-

tion of large, ground-based surveys dedicated to weak lensing, or high-resolution imag-

ing from space. One adapted version of KSB, which takes advantage of the improved

observing conditions in space and thus stabilizes shear estimation, was developed by

Rhodes, Refregier & Groth (1998). This will be used with simulated space-based data

in chapter 6. Inevitably, though, an entirely new approach will be required. Suggested

successors of KSB include shapelets-based techniques (Bacon & Refregier 2003; Massey,

Refregier & Bacon in prep.) as well as others (Kaiser 2000; Kuijken 1999; Bernstein &

Jarvis 2002; Bridle et al. in prep.).

In this analysis we shall use the version of the KSB technique and IMCAT code from

Bacon et al. (2001), but continue to bear in mind its possible instabilities and include the

necessary calibration factors. The KSB method has been widely used and documented,

so the following discussion is intended only as a brief review, to outline the salient points

and to determine the relevant implications for our data reduction and analysis. For

a more complete description of these various issues, see e.g. Mellier (1999), Bacon et

al. (2001), Erben et al. (2001), van Waerbeke et al. 2002, Bernstein & Jarvis (2003) and

Refregier (2003).

3.2.2 Source detection

Individual objects within an image are first isolated using a matched-filter routine known

as HFINDPEAKS. This steps across a 2D image, convolving it each time with a compen-
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sated “Mexican hat” filter of varying sizes. Each convolution returns a detection sig-

nificance ν, and objects above a certain threshold are recorded. Their centres and sizes

rg are determined by the placement and width of the filter which gives the maximum

significance. The local sky background is then determined using the GETSKY routine, so

aperture photometry and shape measurement can be performed on the corrected image

by APPHOT and GETSHAPES.

We immediately remove noisy objects from the catalogue by applying cuts in size,

signal-to-noise and ellipticity of

rg > 1 pixel , (3.1)

ν > 15 , (3.2)

ε 6 0.5 . (3.3)

We shall also remove unresolved galaxies (rg < r
∗
g) once we have determined the size r∗g

of the PSF locally. Note that after these cuts, all of the galaxies in our survey will carry

equal weight. This is not the case in other implementations (Hoekstra et al. 2002; van

Waerbeke et al. 2002), but note that our version of the method has been calibrated (Bacon

et al. 2001), using the same detection algorithm and catalogue cuts on simulated WHT

images with a known input shear.

3.2.3 Shears

A monochromatic image is a real, two-dimensional function f(~x), where f is the sur-

face brightness of an object, or perhaps the total flux within a pixel. In the absence of

gravitational lensing, the image of an “average galaxy”, i.e. the stacked images of many

randomly-oriented galaxies, has circular isophotes. It is therefore even more simply pa-

rameterized by its one-dimensional radial profile f(|~x− ~xc|), where ~xc is the centre of

the object defined by its dipole moment

~xc ≡
∫

R2

~x f(~x)W (|~x|) d2~x (3.4)

and W (|~x|) is a radial weight function chosen to isolate the object and ensure that the

integral converges. In the KSB method, the same Mexican-hat weight function that was

used to detect objects is also used to measure their shapes.

Applying a pure shear to this object will not affect its (azimuthally-averaged) radial

profile, but it will introduce a non-zero quadrupole moment,

Qij ≡
∫

R2

(xi − xci)(xj − xcj) f(~x)W (|~x|) d2~x , (3.5)

where i, j = {1,2}. Indeed, it is only the quadrupole moment of this object that will be
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affected by a shear, because (by definition) only this quantity has the desired angular

dependence. It is therefore natural to base a local shear estimator for each galaxy in

a survey around some measure of its quadrupole moment. The complication will be to

ensure that the estimator is unbiased when averaged over a population ensemble, where

each galaxy does not itself have concentric circular isophotes, and where the galaxies

span a wide range of sizes and magnitudes.

So that the large or bright galaxies do not dominate an average (they are also likely

to be the closest objects with a systematically lower shear than the rest), and so that a

change in brightness due to lensing magnification does not affect the results, we form a

complex ellipticity, or normalized polarizability parameter

ε ≡
{
Q11 −Q22
Q11 +Q22

,
2Q12

Q11 +Q22

}
, (3.6)

in a analogous way to equation (2.67). Kaiser, Squires & Broadhurst (1995) show that this

parameter is changed under the application of a small shear by factor that depends upon

the object’s radial profile and its intrinsic ellipticity εintrinsic (an object initially elongated

in the direction of a shear is not distorted as much as a previously circular one)

εi → ε′i = εintrinsic
i + P γijγj +O(γ2) , (3.7)

where a galaxy’s shape information is encoded in the its shear susceptibility tensor

P γij = 2(δij − εiεj) , (3.8)

for the simple case of unweighted ellipticities (i.e. W = 1, W ′ =W ′′ = 0). For a general

weight function W , the shear susceptibility is a more complicated expression (Kaiser,

Squires & Broadhurst 1995). The Kronecker delta symbol above is then replaced by

1

Q11 +Q22

∫

R2

f(~x)

[
W (x21 + x

2
2) +W

′(x21 − x22)2 2W ′(x21 − x22)x1x2
2W ′(x21 − x22)x1x2 W (x21 + x

2
2) + 4W

′x21x
2
2

]
d2~x (3.9)

which, for the Mexican hat weight function, is a combination of the object’s zeroth-order

and octopole moments Qijkl. These are both defined similarly to equation (3.5), and are

calculated from an image by the IMCAT routine GETSHAPES.

For each source galaxy, we are then able to form a shear estimator

γ̂j ≡
ε′i
P γij
. (3.10)

However, the interpretation of this tensor division is a matter of debate (van Waerbeke et

al. 2000; Bacon et al. 2001, Hoekstra et al. 2002). If the centroid has been well-chosen, the

off-diagonal components of equation (3.9) are relatively small: certainly smaller than
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the noise in any one object. It will not bias the estimator (on average) if we should

choose to discard these components. We can then combine the two remaining diagonal

components into a complex scalar version of P γ . This allows us to relate a complex

ellipticity ε = ε1 + iε2 to a complex shear γ as before. Equation (3.10) becomes a well-

defined, practically calculable and unbiased local shear estimator. Substituting it into

equation (3.7), we indeed find

〈γ̂〉 =
〈
ε′

P γ

〉
= 〈γ〉+

〈
εinitial

〉
= 〈γ〉 , (3.11)

where the last equality only holds if the intrinsic ellipticities of nearby galaxies are un-

correlated (see discussion in section §3.3.6).

3.2.4 Smears

Sheared light rays and coherently distorted images travel to us in pristine condition

from half way across the observable universe. Unfortunately, they are then promptly

destroyed during their last few tens of miles, by turbulence in the Earth’s atmosphere

and imperfect optics in our telescopes. The combined point spread function can be mea-

sured from non-saturated stars within an image, and can be split into two components.

The isotropic part of the PSF circularizes an image, enlarging shapes and reducing their

ellipticity. The anisotropic component elongates all objects within the image, increasing

their ellipticity, but all in the same direction. Both therefore affect the measured shear

and need to be corrected.

The KSB method adopts a similarly linear approach to PSF correction as it does for

shear measurement. The ellipticity ε of a background galaxy changes under PSF convo-

lution by

εi→ ε′i = εintrinsic
i +P sm

ij ε
∗
j , (3.12)

where ε∗ is the stellar ellipticity and the tensor for a general weight function is given by

the somewhat complicated expression

P sm
ij =

∫

R2

f(~x)

[
2W + 4W ′|~x|2 +2W ′′(x21 − x22)2 4W ′′(x21 − x22)x1x2

4W ′′(x21 − x22)x1x2 2W +4W ′|~x|2 + 8W ′′x21x22

]
d2~x− ε∗i ε∗j .

(3.13)

Whilst the effect of shear on an object depends upon its initial shape, the effect of a smear

therefore depends only upon its size. For example, a very large galaxy is left virtually

untouched by convolution with a PSF; but at the other extreme, a point source attains

exactly the shape and size of the same PSF. Furthermore, empirical data shows that

P sm
11 = P

sm
22 within the noise, and that the off-diagonal components of P sm are compatible

with zero. We should especially like to reduce the noise in this quantity, because it will
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appear on the denominator. We shall therefore approximate the isotropic component

of P sm with a real scalar, simultaneously using all of the stars within an image to fit

Tr(P sm)/2 as a function of size r∗g only.

In ground-based observations, the PSF varies both as a function of position and,

rapidly, as a function of time. It is therefore essential to measure the (anisotropic com-

ponent of the) PSF from stars within individual survey images, as it is likely to have

changed by the next exposure. Unfortunately, this means that the moments of the PSF

are only known at the positions of the stars and not at the positions of the galaxies. To

determine the shape corrections for each galaxy, we interpolate by fitting polynomial

functions to each component of the PSF’s quadrupole moment.

Combining the isotropic fit and the interpolated quadrupole moments, we can then

calculate an effective shear susceptibility

P γ = P γgalaxy −
P γ∗
P sm∗
P sm

galaxy , (3.14)

to replace the value used in equation 3.10. Note that we can generally select stars much

brighter than the distant galaxies, so their shape measurement is therefore not as affected

by background noise. The off-diagonal terms are therefore small, and can once again be

neglected to effect the division by P sm
∗ .

3.3 Control of systematic biases

3.3.1 Shear calibration

The most important effort to control systematic biases in our survey was the manufac-

ture of simulated images by Bacon et al. (2001), using the ARTDATA package in IRAF

(Tody 1993). The simulations have observing conditions and a galaxy sample similar to

those in the real data, but with a known input shear. In principle, even a very primitive

measurement method could be used to measure cosmic shear if it were first calibrated

upon sufficiently realistic simulated images. (An advanced image simulation method

will be presented in chapter 5, specialised towards the mimicry of high-resolution space-

based cosmic shear surveys. See section §5.1 for a further discussion about the need for

image simulations).

Shear estimators from the KSB method were corrected by a calibration factor of

(0.85 ± 0.04)−1 derived by Bacon et al. (2001). This factor is due to various effects, in-

cluding object selection biases, shape measurement in noisy images, measurement of P γ

from an already sheared image, and numerical instabilities in PSF correction. It even

varies as a function of S/N and must therefore be calibrated on a population with a

known size-magnitude distribution (Erben et al. 2001). The error upon our calibration

factor therefore includes contributions from all of these sources. It will be propagated
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through to our final constraints upon cosmological parameters. It does indeed produce

a major contribution to the overall error budget (see §3.4).

3.3.2 Preferential detection of certain objects

There are several problems inherent to matched-filter detection methods like HFIND-

PEAKS. The most significant is the preferential detection of objects with shapes similar

its (circular) Mexican hat filter. This effect will exclude faint, highly elliptical objects

from our catalogues, reducing the mean ellipticity of source galaxies, and preferentially

selecting faint objects aligned 90◦ away from the direction of the PSF anisotropy. How-

ever, a much greater impact is produced by the cut in ellipticity that is necessary to

remove cosmetic defects and highly elongated objects that would provide noisy shear

estimators.

The impact of this bias depends upon the slope of the ellipticity distribution. Com-

pensating for it highlights the absolute necessity for realistic image simulations. Note

that the introduction of a weighting scheme for source galaxies as a function of their

size, magnitude or ellipticity (c.f. Hoekstra et al. 2002; van Waerbeke et al. 2002) merely

adjusts the regime in which these biases operate, rather than removing them completely.

A very useful diagnostic for this bias, as well as many others that link measured

shears to the stellar ellipticity, is provided by the star-galaxy correlation functions

CSG
i ≡ 〈 γi e

∗
i 〉2

〈 e∗i e∗i 〉
, (3.15)

where i = {1,2} are components of galaxies’ shear γ or the stellar ellipticity e∗i before

correction.

A significant (anti-)correlation signal was indeed seen for faint galaxies in Bacon,

Refregier & Ellis (2000). Whether this be due to selection biases, or the over-correction of

the PSF anisotropy upon the shapes of faint galaxies, this is the reason for our relatively

conservative S/N cut ν > 15. A sufficiently high cut was specifically chosen to remove

the effect from that dataset. The star-galaxy correlation functions from our updated

observations are shown as dashed lines in the top two panels of figures ?? and ??. They

are barely above the x-axis and confirm that the effect is still negligible on all scales.

Note that it would also have appeared as a B-mode signal in figure 3.11, which is in fact

consistent with zero on all scales.

Other potential problems associated with object detection include the selection bias

(Kaiser 2000; Bernstein & Jarvis 2002), which increases the detection significance of ob-

jects aligned with the local PSF, and the centroid bias, which overestimates an object’s

ellipticity in the direction of the PSF anisotropy. These biases both act proportionally to

ν−2, and have negligible < 0.002 impact upon shear estimators from objects passing our

relatively conservative S/N cut ν > 15. See, for example, figures 7 and 8 in Bernstein &
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Jarvis (2002).

3.3.3 Correction for the point-spread function

Over- or under-correction for changes in shape due to PSF convolution would also be

apparent in the star-galaxy correlation functions (3.15) and E-B decomposition (2.94–

2.95). However, the subject warrants further discussion because it is such an important

part of the shear measurement method and, although the PSF forms distinctive patterns

in observations on all telescopes, their causes are rather poorly understood.

Fortunately, the excellent optical performance of Keck described in section §3.1.3

greatly helps PSF correction, and it does permit some investigation. Some examples of

the patterns made by the PSF anisotropy in Keck images are shown in figure 3.4. These

are extreme cases, but were all taken on the same night, and the patterns can indeed vary

a great deal from even one exposure to the next. The main cause is often found to be im-

perfect telescope guiding, which typically acts on a delayed feedback circuit, or “wind

shake”, which creates oscillations in the telescope. These emerge on an alt-az telescope

as a uniform PSF anisotropy across the field of view, or as a swirl pattern around the

optical axis (within single exposures). Seen in Keck exposures with good tracking, the

next dominant effect appears to be astigmatism due to the fact that the CCD is slightly

skewed with respect to the focal plane, thus probing optical conditions slightly above

and below the focus. Other significant effects are probably created by transient atmo-

spheric conditions, but these are more difficult to disentangle from the ever-changing

PSF patterns.

Note that smears could also be introduced by the co-addition of imperfectly-aligned

multiple exposures. We have obviously tried to re-align dithered exposures as well as

possible. However, our algorithm notably lacks correction for any rotation of the field

between exposures. Any such misalignment would reveal itself in stacked exposures

with patterns similar to those caused by tracking errors. This component of the PSF can

be treated in the same way as the others, and is corrected for along with them by KSB.

The long-thin (8′ × 2′) geometry of the ESI field also enhanced some previously un-

foreseen biases due to edge effects (which also necessitated careful masking of the field:

see §3.3.5). The PSF interpolation in the short x direction was often overfit by KSB’s sim-

ple polynomial fitting. The divergent PSF model overcompensated for the true smear-

ing and spuriously elongated galaxies near to the edges in the y direction. This effect

revealed itself as a non-zero ∼ 2% mean shear within each field (perhaps the offset in

CFHT data from van Waerbeke et al. (2001) has a similar origin). The divergent PSF

model also caused a∼ 1.1% excess in the final shear correlation functions at pair separa-

tions around 2′, the width of the CCD. A more adaptative algorithm was written, which

found the smallest degree polynomial possible for a significant fit. Typically, a quadratic

or cubic was required in the long y direction; the much narrower x direction generally
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Figure 3.4: Example stellar ellipticity patterns on the Echelle Spectrograph and Imager on the
Keck telescope. The patterns vary dramatically between fields: these three are extreme examples,
but were still all taken on the same night. The mean PSF ellipticity across the survey is 0.035.
The first panel shows a field in which telscope tracking was not perfect. The third panel shows
suspected astigmatism. The pattern in the fifth panel is unexplained. Intervening panels show
the stellar PSF after correction by the KSB method. This performs well in all cases, and the
mean stellar ellipticity is reduced to < 0.001 across the survey, with residual orientations being
essentially random. The correction of similar PSF patterns in a WHT image is demonstrated in
figure 5 of Bacon, Refregier & Ellis (2000).

suited only a constant or linear function. This algorithm could also be closely moni-

tored, to remove any anomalous stars by hand. In this way, the rms stellar ellipticity

was reduced to a negligible level < 0.001.

The WHT PSF can become quite anisotropic over long exposures, with a mean stellar

ellipticity of 0.051 ± 0.28. The PSF anisotropy patterns are less clear, but tracking and

astigmatism certainly have major roles. The patterns are generally well-fit by quadratic

or cubic polynomials in the 8′ x direction, and by cubic or quartic polynomials in the 16′

y direction. Application of the same PSF fitting and correction algorithm as for the Keck

data, reduced the WHT rms stellar ellipticity to 0.0056± 0.0012.

3.3.4 Instrumental distortion

Telescope flexure, or distortions within the camera, can shear an image in a way that

precisely that mimics gravitational lensing. This instrumental shear pattern changes as

a telescope moves around the sky, or as the camera changes temperature. Fortunately,

we can use the accompanying changes in objects’ positions on dithered exposures to

monitor these “astrometric” distortions in every survey field.

The observed positions of objects are, in general, offset by more than just the point-



3.3. Control of systematic biases 55

ing change between dithers. We first determine SEXTRACTOR (Bertin & Arnouts 1996)

positions for each galaxy and star found on at least three dithers for a given field. The

distortions are then parameterized by

~xf ′ − ~xf ≃ Ψ
(
〈~xf 〉 − 〈~xf ′〉

)
, (3.16)

where ~xf and ~xf ′ are the positions of one galaxy observed on two different dithers;

and where 〈~xf 〉 and 〈~xf ′〉 are the positions of the centres of the frames. Using a linear

approximation for the camera’s distortion matrix

Ψ ≡
(
κ+ γ1 γ2 + ρ

γ2 − ρ κ− γ1

)
, (3.17)

we can then solve equation (3.16) for the camera shear γ. An extra pair of dithers can be

used to find the magnification κ and rotation ρ. This process can be performed for each

object in an image, giving the distortion matrix across the whole field; in practice, we

create bins within which to measure Ψ, and thus reduce the noise.

Figure 3.5 shows the observed instrumental shear patterns on our two survey instru-

ments. The ESI shear pattern was averaged over 20 fields in order to overcome noise,

because the error on the mean shear in a 1′ square bin is 9% for any one given field. After

this averaging, we find that the shear has a mean of 0.2% and is < 0.3% everywhere; the

mean shear fluctuates by < 0.1% when using different sets of 20 fields. This is a negli-

gible level of contamination to add (in quadrature) to results that will deal with shears

of ∼ 1%. We can therefore ignore this effect in our analysis of Keck data. The magnifi-

cation and rotation components are also < 0.3%, and are consequently both negligible

with such a small field of view.

Instrumental distortions on the WHT closely follow the engineering predictions in

the Prime Focus Imaging Port manual (Carter & Bridges 1995) of γtangential = 0, γradial =

−8.2× 10−5r2, with r measured in arcminutes from the field centre. Fluctuations in the

observed value between fields is< 0.1%. The mean shear is also only 0.1%, but the large

field of view means that the distortion toward the edges of the field could be detectable

in such a large survey. KSB does not supply a prescription to deal with the correction of

post-smear shear, so we implement this by simply subtracting the distortion predicted

by the engineering model from our final shear catalogues. We perform this subtraction

using the shear addition and subtraction operators in Bernstein & Jarvis (2002). Magni-

fication and rotation components on WFC images are both < 0.4% and therefore again

negligible.

3.3.5 Masking of the field

The shear averaged over many survey fields should be consistent with zero everywhere.

However, the presence of many other systematics, including problems with flat fielding,



56 Chapter 3. Current cosmic shear results

Figure 3.5: Instrumental distortions, reproduced from Bacon et al. (2003). Each bar in the left-
hand panel represents the magnitude and orientation of distortions in the Echelle Spectrograph
and Imager on Keck, averaged over 20 sets of three dithered exposures to reduce noise. Note
that the ESI field has an illuminated area that is rotated from the x and y axes by 7◦, accounting
for the slightly slanted geometry on this figure. The middle and right-hand panels show the
distortions in one typical image from the Wide Field Camera on the William Herschel Telescope.

charge transfer effeciency, inhomogeneous read noise, and telescope flexure or vibration,

could cause the shear to vary as a function of position on the CCD. Figures 3.6 and 3.7

proved very helpful to diagnose all such problems, and show the observed shear in all

of the Keck fields and all of the WHT fields.

Edge effects (including not only the boundaries of the CCD but also chip defects

and saturated stars) exaggerated by the long-thin Keck field of view quickly showed

the necessity for stringent masking of the chip. Galaxies near an edge on any one of the

dithered exposures are cut in half, and appear aligned to that boundary. Even if not exactly

on the boundary, the flat fielding was poorer near edges (∼10−4 gradient) and image co-

addition failed because of differing background levels in the dithers. If strips of galaxies

near the edges of the CCD are not excluded from the final catalogue, the overall mean

shear increases by ∼2%. We therefore remove all glaxies within 25′′ of any edge.

Saturated stars created a similar problem of background gradients and poor flat field-

ing. Although their saturation trails and diffraction spikes are already excluded from the

object catalogue by the ellipticity cut, we also remove any object within 10′′ of any satu-

rated pixel. The mean shear in the Keck fields then becomes 〈γ1〉 = (−0.2± 1.6)× 10−3
and 〈γ2〉 = (−2.9± 1.6)× 10−3. The γ1 component is consistent with zero offset in the

whole ensemble, as we would expect, while the γ2 component is consistent with zero at
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Figure 3.6: Average shear in all Keck survey fields, as a function of CCD position. Overall,
〈γ1〉 = (−0.2± 1.6)× 10

−3 and 〈γ2〉 = (−2.9± 1.6)× 10
−3

the 2σ level. This may represent a small uncorrected distortion; however, given that this

adds in quadrature to a shear signal typically at the 2% level, we are free to neglect this

small systematic error.

In most observations, the distribution of stellar ellipticities over the field is found to

be smooth and slowly varying (see figure 3.4). Some Keck exposures taken during July

2000 were found to have an unexplained, sharp discontinuity in this pattern two thirds

of the way up the field. For these fields, only objects on one side of the PSF discontinuity

were used. Figure 3.6 further demonstrates that there is no significant structure in the

remaining shear values as a function of position on the chip.

The mean components of shear in the entire WHT survey are 〈γ1〉 = (1.1 ± 7.1) ×
10−4 and 〈γ2〉 = (15.6± 7.0)× 10−4. Thuis we find similarly negligible systematics as a

function of position on the WHT CCD. Other interesting statistics, which will be cited

as the typical precision for ground-based shear measurements, include 〈|γ|〉 = 0.348,
〈|γ|2〉1/2 = 0.413, σγ1 = σγ2 = 0.293 and σ|γ| = 0.223.
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Figure 3.7: Average shear in all WHT survey fields, as a function of CCD position. Overall,
〈γ1〉 = (1.1± 7.1)× 10

−4 and 〈γ2〉 = (15.6± 7.0)× 10
−4.

3.3.6 Intrinsic alignments of neighbouring galaxies

We have needed to assume that galaxies are not aligned with their neighbours or, equiv-

alently, that 〈ε〉 is zero in the absence of lensing. In this way, any observed correlation

between average galaxy orientations must be due to the effects of weak lensing. Un-

fortunately, theoretical predictions exist that galaxies may be significantly aligned with

their neighbours over a distance of several Mpc (e.g. Crittenden et al. 2000; Catelan et al.

2000). Assuming that galaxy shapes are at least partly determined by the shape and an-

gular momentum of their dark matter halos, this intrinsic alignment might arise during

two stages in the evolution of the galaxy:

• The decoupling of the proto-galaxy from the Hubble flow. Tidal gravitational

forces and torques from the surrounding LSS can stretch (ellipticals) or spin up

(spirals) the dark matter halos. In this scenario, adjacent proto-galaxies are affected

by the same LSS and align both with it and with each other.

• Later dynamical interactions of galaxies with their neighbours. This effect has

nothing to do with the surrounding large scale density field, so the galaxy align-

ments, although themselves correlated, would not be correlated with LSS. This

difference could, in theory, allow the two scenarios to be distinguished in real data.
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Intrinsic galaxy alignments may indeed provide a useful probe of structure formation

under gravitational collapse, and constrain models of galaxy evolution (Heavens et al.

2000; Croft & Metzler 2000; Heavens 2003). However, they contaminate weak lensing

surveys, mimicking the coherent shear signal to produce a systematic bias.

Attempts to measure the level of the intrinsic alignments signal (Brown et al. 2000;

Lee & Penn 2000; Heymans et al. 2003), or to calculate it analytically (Crittenden et al.

2000; Hui & Zhang 2002), or via numerical simulation (Heavens et al. 2000; Croft &

Metzler 2000; Jing 2002) have produced a range of predictions varying by over an order

of magnitude. Intrinsic alignments are a particular problem for shallow lensing surveys,

in which the predominantly nearby galaxies are also close to each other in real space,

or deep lensing surveys whose source galaxies are split into redshift slices. Redshift

tomography can be used to trace the evolution of structure formation over time, but it

again isolates galaxy pairs that are likely to be physically close.

At the most pessimistic end of the predictions (e.g. Jing 2002; Hui & Zhang 2002), if

a galaxy’s light is exactly aligned with its dark matter halo, intrinsic alignments might

affect the 2D shear statistics in lensing surveys even as deep as ours. Fortuntately, nu-

merical simulations of structure formation by van den Bosch et al. (2002) show that this

is unlikely. They estimate a median (projected) misalignment angle of ∼ 30◦ between

a galaxy’s light and its dark matter halo. Intrinsic alignments can therefore be ignored

in our survey (e.g. Heymans et al. 2003). In chapter 6, we shall also assume that suffi-

ciently accurate photometric redshifts will be available for galaxies in future 3D surveys

to down-weight the contribution from close pairs. Such techniques (King & Schnei-

der 2002; Heavens & Heymans 2002) can leave negligible contamination from intrinsic

alignments.

3.3.7 Overlapping isophotes

One final problem for shear measurement that needs to be mentioned, but which is fre-

quently overstated, concerns the overlapping isophotes of adjacent objects (van Waer-

beke et al. 2000). Real data does not contain the isolated images that are required for

the calculation of their shape moments (3.5). This calculation can be biased by a sec-

ond galaxy lying along a line of sight closer than the projected size of the Mexican hat

weight function – even if the two galaxies are far apart in redshift. The galaxies’ shapes

did not respond to shears or smears in the way that their combined, “peanut-shaped”

isophotes would suggest. However, it is hoped that the orientations of such false pairs

occur equally in all directions. So long as the two galaxies are not used as a pair in

the calculation of shear correlation functions (and we shall ignore all galaxy pairs closer

than 1′ as suggested by the simulations of Bacon et al. (2001)), this effect therefore adds

noise to a result but does not bias it.
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3.4 Results

3.4.1 Correlation functions

Having compiled catalogues of shear estimators for many distant galaxies within our

survey, we shall now measure the shear-shear correlation functions (2.81) and (2.82).

All groups’ constraints on cosmological parameters have currently been drawn from

this two-point moment. Since the fields are widely separated, we shall not try to calcu-

late the correlation function in the entire survey area. Our pencil-beam survey strategy

instead has the advantage that we can measure the correlation function Cfi (θ) on (rela-

tively small) scales contained within many independent fields f . The limited number of

galaxies in each field burdens individual measurements with shot noise; but they can be

combined into shear correlation function estimators

Ci(θ) ≃
1

Nf

Nf∑

f=1

Cfi (θ) , (3.18)

by simply averaging over the total number of fields Nf in each survey. In practice,

we exclude between eight and twelve fields from the average (for both Keck and WHT

surveys), chosen at each θ-bin as 3σ outliers in CSG
1 , CSG

2 , or C3. Most of these fields

were excluded on all scales. However, this scheme did allow a few fields to be included

at small θ but excluded at large θ (or vice versa), reflecting the scales on which their PSF

was well-modelled and suitably corrected.

The pencil-beam survey strategy also allows us to calculate the uncertainty in Ci(θ),

automatically including the contribution to errors from both statistical shot noise and

cosmic variance variance. A measure of the entire error budget, apart from systematic

contributions, is given on all scales by

σ2[Ci(θ)] ≃
1

N2f

Nf∑

f=1

[
Cfi (θ)−Ci(θ)

]2
. (3.19)

The results are shown for the Keck survey in figure 3.8, and for the WHT survey in

figure 3.9. In both cases, the measured values are consistent with the theoretical pre-

dictions shown as three solid lines (for C1 and C2) or zero (for C3). The three lines

demonstrate the level of uncertainty due to the imperfectly known source redshift dis-

tribution. From the bottom up, the lines correspond to a median source redshift of

zs = {0.8,0.9,1.0}, in a standard ΛCDM model (Ωm = 0.3, ΩΛ=0.7, Γ = 0.21 and σ8 =

1.0). These figures also include dotted lines showing the star-galaxy correlation func-

tions (3.15). On these fields, PSF correction has apparently been performed sufficiently

well to provide only a negligible contribution to observational systematics.

We have also estimated the statistical errors alone (i.e. neglecting cosmic variance).

These are useful for comparison to older surveys that quoted only this value, and to
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Figure 3.8: Observed shear-shear correlation functions from the Keck survey. The inner error
bars correspond to statistical errors (shot noise) only. The outer error bars also include the
contribution from cosmic variance. The results are compatible with the theoretical predictions,
shown as solid lines. From the bottom up, these correspond to a median source redshift of
zs = {0.8,0.9,1.0}, in a fixed ΛCDM model with Ωm = 0.3, ΩΛ=0.7, Γ = 0.21 and σ8 = 1.0. The
star-galaxy correlation functions, shown as dotted lines barely visible above the x-axes, demon-
strate the success of the PSF correction for galaxy shapes, and the low level of systematic errors
from this source.
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Figure 3.9: Observed shear-shear correlation functions from the WHT survey. Note the change
of scale in the y-axis from figure 3.8.

provide an indication of the statistical significance of the detection of the cosmic shear

signal.

σ2stat[Ci(θ)] ≃
σ2ǫ√
Npairs(θ)

(3.20)

where σ2ǫ ≡ 〈γ21〉 = 〈γ22〉 is the intrinsic ellipticity variance of individual galaxies, and

Npairs(θ) is the number of galaxy pairs used in the angular bin centered on θ. The mea-

sured ellipticity dispersion is σǫ = 0.31 in Keck data and σǫ = 0.30 in WHT data. The

excellent imaging performance and speed of the 10m Keck telescope. The fraction of the

error on the Keck correlations functions due to statistical errors is smaller on all scales
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than the fraction of the WHT errors.

The measurements of the correlation functions on different angular scales probe the

same structures, and are generally not independent. Our pencil-beam survey strategy

proves useful for a final time, because we can directly calculate the full covariance matrices

of the correlation functions

cov[Ci(θ),Cj(θ
′)] ≃ 1

N2f

Nf∑

f=1

[
Cfi (θ)−Ci(θ)

] [
Cfj (θ

′)−Cj(θ′)
]
. (3.21)

These again include the both shot noise and sample variance. The covariance between

θ-bins will be required to properly fit cosmological parameters to our data.

TheC1 covariance matrices for the Keck and WHT data are shown in figure 3.10. Sim-

ilar matrices are found for the covariance between different angular scale in C2, and the

cross-correlation between C1 and C2. The Keck data points have significant covariance

on angular scales larger than ∼ 3′, due to the elongated field geometry of the ESI cam-

era. The WHT data points have significant covariance on all scales, because narrower

bins were used. These are very useful to perform the numerical integrations required

for the E-B decomposition and the calculation of shear variance in cells, but it curiously

enlarges the error bars on cosmological parameters. Tighter constraints are obtained by

doubling up the θ-bins in WHT data, calculating the correlation functions anew, and

using only half as many data points to constrain parameters.

Figure 3.10: Covariance matrices, for Keck survey data (left) and WHT survey data (right), show-
ing the correlation between different angular scales in the measured correlation function C1 in
figures 3.8 and 3.9. Similar matrices are found for the covariance between different angular scale
in C2, and the cross-correlation between C1 and C2.
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Figure 3.11: E-B decomposition of the Keck survey data (top) and WHT survey data (bottom).
The solid lines show the E-modes; the dotted lines the B-modes. In both cases, the E-mode results
are compatible with the theoretical curves. As before, these correspond to a median source red-
shift of zs = {0.8,0.9,1.0}, in a fixed ΛCDM model with Ωm = 0.3, ΩΛ=0.7, Γ = 0.21 and σ8 = 1.0.
The Keck data has B-modes consistent with zero on all scales, although the survey area is only
barely sufficient to permit this decomposition. The WHT data has B-modes consistent with zero
on all scales, bar the first two bins and the final bin. Since these appear to be contaminated with
B-modes, they will be discarded for the calculation of cosmological parameter constraints.
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3.4.2 E-B decomposition

A decomposition of the shear correlation functions into E-modes, which are produced by

cosmic shear plus systematics, and B-modes, which include only systematics, is shown

in figure 3.11. As described in section §2.2.7, the finite extent of the correlation functions

to high angular scales means that CE(θ) and CB(θ) are determined only up to a constant

of integration. This should be added to CE(θ) and subtracted from CB(θ). It has been

determined for the Keck survey by best-fitting the B-mode data to zero, using the error

bars to weight the contributions from the different bins. For the Keck data, we thus

added 1.16 × 10−04 to the E-modes and subtracted the same value from the B-modes.

Using the same process for the WHT data, the value was 2.68 × 10−05 (c.f. expected

value of 2× 10−05 for truncation at 16′, with zs = 0.8 in a ΛCDM cosmology).

After the subtraction of this constant, B-modes in the Keck data are consistent with

zero B-modes on all scales. However, the Keck survey area is barely sufficient to permit

this decomposition and the measurement of the E-modes is very noisy. The much larger

WHT survey successfully divides the signal into E- and B-modes, with very encouraging

results. There is slight contamination on small scales, and the final bin is noisy: so the

bins at θ < 2 and θ > 15will not be included in the calculation of cosmological parameter

constraints. On all other scales, however, the B-modes are consistent with zero. This

demonstrates that the data reduction was sufficiently well performed to avoid many of

the problems commonly associated with the measurement of weak gravitational lensing

(see §3.3).

3.4.3 Shear variance in cells

The variance of the shear in circular cells has often been used to express cosmic shear

results in the past, and is useful for comparison between groups. We present our re-

sults in this form, along with those from similarly deep lensing surveys, in figure 3.12.

These surveys use data from 8.5 sqaure degree VIRMOS-DESCART survey on the 3.6m

Canada-France-Hawaii Telescope (CFHT) by van Waerbeke et al. (2001); the 1.25 square de-

gree COMBO-17 survey on the 2.2m La Silla telescope by Brown et al. (2003); the 0.36

square degree Medium Deep Survey with the Wide Field and Planetary Camera on HST by

Refregier et al. (2001); and 0.27 square degrees of random fields observed in the parallel-

mode of the Space Telescope Imaging Spectrograph (STIS) on HST by Rhodes et al. (2003).

All of these deep surveys appear to prefer a higher value of σ8 around unity, in contradic-

tion of recent measurements of x-ray selected cluster abundances that suggest σ8 ≈ 0.75
(Seljak 2001).
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Figure 3.12: Shear variance in (circular, top-hat) cells, as a function of the radius of the cells. Our
results are compared to those from similarly deep surveys by other groups (see text). The solid
lines show the theoretical predictions, as before, for a fixedΛCDM model with Ωm = 0.3,ΩΛ=0.7,
Γ = 0.21 and σ8 = 1.0, assuming a median source redshift of zs = {0.8,0.9,1.0}. The dashed lines
show theoretical predictions for the same three median source redshifts, but in a universe with
σ8 = 0.7, compatible with recent measurements of x-ray selected cluster abundances.

3.4.4 Cosmological parameter fitting

We now use a Maximum Likelihood technique to determine the constraints set by our

observations upon the cosmological parameters Ωm, the total mass-density of the uni-

verse, and σ8, the normalisation of the matter power spectrum at 8 Mpc. The analysis

directly uses the observed correlation functions C1(θ) and C2(θ), proceeding as in Bacon

et al. (2003), except that theoretical predictions are calculated with the fitting functions

of Smith et al. (2003) rather than those by Peacock & Dodds (1996). This has the effect of

lowering our final constraint on σ8Ω
0.5
m by about 5%.

The theoretical correlation functions (2.79) were first calculated by Alexandre Re-

fregier, at many points in a 2D grid across the Ωm vs σ8 plane. The median redshift for

source galaxies was fixed to zs = 1.0 for the Keck survey, and to zs = 0.8 for the WHT

survey, and the power spectrum shape parameter set to Γ = Ωmh = 0.21, as indicated

by recent observations of clustering in galaxy redsift surveys (Percival et al. 2001; Szalay

et al. 2003). Note that this constraint on Γ, which sets the position of the peak of the
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Figure 3.13: Constraints upon cosmological parametersΩm and σ8, from a maximum-likelihood
analysis of the Keck survey data. The 68% (solid), 95% (dashed) and 99% (dotted — only one side
visible) confidence limits include statistical errors and non-Gaussian cosmic variance. However,
they include neither the calibration of the shear measurement method, nor uncertainty in the
source galaxy redshift distribution. These sources of error are considered seperately in the text.

linear power spectrum, is equivalent to a constraint on the Hubble parameter h. Errors

on these parameters will be considered seperately. We then fitted the observed shear

correlation functions ~d(θ) to the theoretical predictions ~t(θ), calculating the log-likelihood

function

χ2 ≡ (~d(θ)−~t(θ,Ωm, σ8))T cov[Ci(θ),Cj(θ
′)] (~d(θ)−~t(θ,Ωm, σ8)) (3.22)

throughout the grid. We thus explore parameter space in this plane, and minimise χ2 to

find the best-fit cosmological model. To compute confidence contours, we numerically

integrate the likelihood function

L(Ωm, σ8) ≡ e−χ
2/2 . (3.23)
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Figure 3.14: Constraints upon cosmological parameters from the WHT survey data, showing the
68%, 95% and 99% confidence limits, as in figure 3.13.

The constraints from Keck and WHT data are presented in figures 3.13 and 3.14.

The contours show 68%, 95% and 99% confidence limits, including statistical error and

non-Gaussian sample variance. They reveal the well-known degeneracy between Ωm

and σ8 when using only two-point statistics, although the leverage created by the wide

range of angular scales probed by the WHT survey is beginning to exclude small values

of Ωm < 0.25. A similar result was observed by the large cosmic shear surveys of van

Waerbeke et al. (2001) and Bacon et al. (2003), where data on many angular scales exluded

large values of Ωm > 0.6.

A good fit to the 68% confidence level from our Keck data is given by

σ8

(
Ωm
0.3

)0.52
= 1.01± 0.19 , (3.24)

while the WHT data is well-fit by
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Figure 3.15: Constraints upon cosmological parameters after marginalisation over both surveys,
showing the 68%, 95% and 99% confidence limits, as in figure 3.13.

σ8

(
Ωm
0.3

)0.52
= 1.11± 0.10 , (3.25)

for 0.25 < Ωm < 0.8. Marginalising over both results, by multiplying their two likeli-

hood functions, gives a constraint from a combined survey. The confidence contours are

shown in figure 3.15, and the 68% confidence level is well-fit by

σ8

(
Ωm
0.3

)0.52
= 1.09± 0.09 , (3.26)

with 0.1 < Ωm < 0.8.

Note that this includes only the statistical error and sample variance. We can propa-

gate other sources of error by noting that

Ci(θ) ∝ Ω1.46m σ2.458 z1.65s Γ−0.11(P γ)−2 (3.27)
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around θ = 5′, in a fiducial ΛCDM cosmological model with Ωm = 0.3, ΩΛ=0.7, Γ = 0.21

and σ8 = 1.0. Adding to this (in turn) the 10% source redshift uncertainty, the 15% prior

on Γ, and the 5% shear calibration uncertainty gives a final 68% CL constraint for the

combined survey of

σ8

(
Ωm
0.3

)0.52
= 1.09± 0.090± 0.073± 0.007± 0.044 (3.28)

= 1.09± 0.12 , (3.29)

where the errors are combined in quadrature. This result therefore includes all contri-

butions to the total error budget: statistical noise, sample variance, covariance between

different angular scales, systematic measurement and detection biases, source redshift

uncertainty, and marginalisation over priors on other parameters.

3.4.5 Discussion

Our measurement is relatively high, but still agrees at 1σ with other cosmic shear results

from deep surveys by van Waerbeke et al. (2002), Refregier et al. (2002), and Rhodes et

al. (2003). Our results are consistent within 1.5σ with WMAP CMB results (Spergel et

al. 2003), and also agree with the old cluster abundance normalisation (Eke et al. 1998;

Viana & Liddle 1999; Pierpaoli et al. 2001). However, our results disagree at the 3σ level

with newer estimates of the cluster-abundance normalisation, derived using an observa-

tional rather than theoretical mass-temperature relation (Borgani et al. 2001; Seljak 2001;

Rieprich & Böhringer 200; Viana et al. 2001). This discrepancy could arise from unknown

systematics in either the cluster or cosmic shear methods. The two techniques probe sim-

ilar scales, so Amara & Refregier (2003) concluded that higher order, non-Gaussianity of

the mass distribution could not account for the different measurements. Further studies

are needed for the cluster method, to understand the difference between the observed

mass-temperature relation and that found in numerical simulations, and more reliable

shear measurement methods are required for the cosmic shear method. It is important to

understand the origin of the discrepancy between cosmic shear and cluster abundance

results. If this is not explained by other arguments, it could point towards a failure of the

standard ΛCDM paradigm, and therefore have important consequences for cosmology.

Our results are also incompatible at the 2 → 3σ level with results from shallower

cosmic shear surveys by Hoekstra et al. (2002) and Jarvis et al. (2002). This discrepancy

could arise from the shape measurement methods: the object selection cuts are different,

and neither of those methods have been calibrated upon simulated data (if the same cal-

ibration factor were incuded in those results, they would become similar to our own).

An assortment of shape measurement methods are currently being tested and calibrated

upon the same input images, using the image simulation method described in chap-
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ter 5 (Bridle et al. in prep.). The discrepancy with shallow cosmic shear surveys could

alternatively arise from uncertainty in the redshift distribution of background galaxies

in the deep data. Especially after catalogue cuts in object size, it is difficult to determine

the precise redshift distribution of the included background galaxies. As seen in equa-

tion (3.28), source redshift uncertainty is currently a major component of the total error

budget. The cosmic shear analysis of the deep multicolour COMBO-17 survey (Brown

et al. 2003) could indeed take advantage of photometric redshifts, and did then measure

a comparatively low value for σ8(Ωm/0.3)
0.49 = 0.72+0.08−0.09. However, those results ex-

hibit a peculiar angular dependence that is neither fully understood nor fully consistent

with theoretical predictions (see figure 3.12). This discrepancy therefore remains unre-

solved. It could be more definitively explained by the incorporation of spectroscopically-

confirmed DEEP2 galaxy redshifts (Davis et al. 2000) into future cosmic shear surveys

(Miyazaki et al. in prep.) or by future wide-field imaging surveys in multiple optical and

near infra-red colours from space. This issue will be further explored in chapter 6.
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4
Shapelets

4.1 The shapelets formalism for image analysis

4.1.1 Motivation

As seen in chapter 3, the limiting factor for all current cosmic shear surveys is the control

of systematics in image analysis and galaxy shape measurement. To accurately quantify

and investigate these systematic effects, we now introduce the “shapelets” formalism.

This was first introduced in Refregier (2003; hereafter Shapelets I), and in this thesis we

shall particularly need to develop further techniques using “polar shapelets”.

Shapelets provides an accurate way to model a (localised) object within an image

array, capturing all of its structure and faithfully reproducing the morphology of any

galaxy. The surface brightness of the image is expressed in shapelet space as a weighted

sum of orthogonal basis functions, rather like Fourier or wavelet synthesis. The shapelet

basis functions are perturbations around a Gaussian. These prove mathematically con-

venient for many tasks in image processing and manipulation commonly used in as-

tronomy.

Refregier & Bacon (2003; hereafter Shapelets II) showed how shapelets could be used

to form shear estimators for weak gravitational lensing. They extend the domain of

weak lensing measurement beyond the quadrupole moments of galaxy shapes, to also

include their higher order shape moments. Chang & Refregier (2002) used the elegant

properties of shapelets under Fourier transform to reconstruct images, and to measure

weak lensing, with interferometers. Kelly & McKay (2003) used shapelets to quantita-

73
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tively classify galaxy morphologies in the Sloan Digital Sky survey. A related method

has also been independently suggested by Bernstein & Jarvis (2002; hereafter BJ02).

In this chapter, we shall first develop the formalism of polar shapelets, and analyt-

ically derive some useful results. We shall then describe a new method to perform a

shapelet decomposition, dealing with the typical problems in real, observational data:

including pixellisation, noise and a point-spread function. We shall finally develop

methods to optimise a shapelet decomposition, maximising the data compression ra-

tio and the overall quality of image reconstruction. Where it is necessary to test our

method upon realistic galaxy morphologies, we shall use objects in the Hubble Deep

Fields (Williams et al. 1996, 1998; hereafter HDFs). These provide typical examples of

the irregular galaxy shapes that should be found in deep, high-resolution cosmic shear

surveys in the near future.

In chapter 5, we shall then use the shapelet parameterizations of HDF galaxies to

simulate images from future cosmic shear surveys, containing morphologically accurate

objects. Since the manufactured observations will have known input shapes, we shall

be able to use them to test and calibrate shear measurement methods. In chapter 6, we

shall use the image simulations to predict the precision of shear recovery from future

surveys, under a variety of observing conditions, instrumental configurations and sur-

vey strategies.

4.1.2 Advantages of shapelets

Figure 4.1 demonstrates the superb quality of shapelet-based image reconstruction that

is possible for all galaxy morphologies. The first column shows IF814W band images of

real HDF galaxies. The middle column shows a shapelet model of the galaxy, and the

third column the residual, always consistent with noise. Particularly for this sort of ir-

regular or spiral galaxies, the shapelet models are far superior to equivalent techniques

using only traditional radial profiles. GALFIT (Peng et al. 2002), for example, is com-

pletely unable to deal with even spiral arms. The residuals shown in plots similar to

figure 4.1 are much worse than those using shapelets.

There are also many practical and computational advantages of a shapelet decom-

position. The basis functions were specifically chosen for their convenient mathematical

properties. Objects in shapelet space can be enlarged, rotated or sheared by very sim-

ple operations. Various linear combinations of shapelet coefficients measure an object’s

size, flux, and other aspects of its morphology. One coefficient, for example, contains

the object’s Gaussian-weighted ellipticity that wold be used by KSB. The shapelet basis

functions are also invariant under Fourier transform, up to a phase factor. This renders

convolutions and deconvolutions (e.g. from a PSF) easy to perform analytically.

Data compression ratios as high as 50 are possible with a shapelet decomposition

(Shapelets I), by keeping only those shapelet coefficients above a significance threshold,



4.1. The shapelets formalism for image analysis 75

Figure 4.1: Shapelet decomposition of a selection of HDF I-band galaxies. Even irregular galaxy
morphologies can be well-modelled with this technique. In all cases, the first column shows the
original HDF image and the middle column shows the shapelet model with nmax = 14. The third
column shows the residuals. The image size and colour scale is different for each row.
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or by truncating the expansion at high orders. Truncating the expansion sets a minimum

and maximum physical scale of interest: conveniently for typical galaxy morphologies,

the resolution of a shapelet model is also greatest near the centre. A small amount of

information is then discarded at higher spatial frequencies. However, it is possible to en-

sure that this lost information is consistent with noise, by requiring the final reconstruc-

tion to have a reduced χ2 less than unity. Furthermore, data compression with shapelets

is achieved via the parameter-independent truncation of a series. Shapelet’s complete

basis set avoid the requirement in GALFIT (Peng et al. 2002) or GIM2D (Simard 1998) to

specify in advance the number and type of profiles for each model. A Karhunen-Loéve

decomposition would also require models to be specified in advance for both the image

morphology and for the noise.

Finally, the orthonormality of the shapelet basis set guarantees a unique and lin-

ear one-to-one mapping from the image plane to the coefficients. This simplification,

and many of shapelets’ convenient mathematical properties are lost to methods, such as

PIXON (Piña & Puetter 1993), that use an over-complete basis set.

4.1.3 Disadvantages of shapelets

There are two main criticisms often levelled at shapelets. The first is that it may not

easily capture the extended wings of many galaxies. Practical computation requires a

truncation of high-order shapelet coefficients. However, this leaves the shapelet basis

set incomplete, and an expansion around a Gaussian is not ideally matched to typi-

cal exponential or de Vaucouleurs profiles. A demonstration that our algorithm does

use sufficient numbers of coefficients is the remarkable match in the concentration in-

dex between shapelet models and real galaxies shown in §5.3. In fact, the ability of a

shapelet decomposition to recognise correlations between adjacent pixels may even en-

able our model to extend further than SEXTRACTOR into the wings of a faint object on

the threshold of detection, where the flux in individual pixels is lost beneath the level of

background noise.

The second criticism is a potentially greater problem for our method. The trunca-

tion of a shapelet decomposition (or indeed any basis set that is complete, rather than

over-complete) can produce artefacts in the image reconstruction. Spurious residuals

emerge that resemble one basis function, due to the near-cancelling of large positive

and negative coefficients in others. For shapelets, this is typically seen as ringing, and

is particularly apparent around long and thin galaxies, which are less well-matched to

the circular basis functions. Preserving the linearity of a shapelet decomposition also

prevents the imposition of a positive-definite constraint. The spurious residuals can

therefore appear either as extra positive flux or as negative holes. However, we note

that this occurs widely in other methods; including wavelets, where it is only removed

by a (non-linear) projection in wavelet space onto the sub-space of positive solutions.



4.2. Shapelet basis functions 77

While most artefacts are only at the level of even modest background noise, we turn

around this disadvantage in §5.2.5. There we use the absence of any negative holes in a

shapelet model or a simulated image as a first-order check that they are realistic.

4.2 Shapelet basis functions

4.2.1 Cartesian shapelets

Any smooth function, like the surface brightness f(x, y) of a galaxy, can be expressed as

f(~x) =

∞∑

n1=0

∞∑

n2=0

an1,n2 φn1,n2(~x;β) , (4.1)

where the shapelet coefficients an1,n2 are weights to be determined, and the dimensionful

shapelet basis functions

φn1,n2(~x;β) ≡
Hn1

(
x
β

)
Hn2

(
y
β

)
e
− |~x|

2

2β2

β 2n
√
πn1!n2!

(4.2)

are plotted in figure 4.2. Hn(x) is a Hermite polynomial of order n, and β is a scale

size. These Gauss-Hermite polynomials form a complete and orthonormal basis set.

This ensures that the shapelet coefficients can be determined by simply evaluating the

overlap integral

fn1,n2 =

∫ ∫ ∞

−∞
f(~x) φn1,n2(~x;β) d2x . (4.3)

Like a Fourier or wavelet transform, a shapelet expansion (4.1) can be truncated in

practice at some finite nmax. The array of shapelet coefficients is typically sparse for

most galaxy morphologies, which can therefore be accurately modelled using only a

few numbers. As shown in Shapelets I, data compression ratios are frequently as high

as 60:1.

However, our choice of Gauss-Hermite basis functions is governed not by the physics

of galaxy morphology but by the mathematics of image manipulation. As we will see

in §4.2.4, a shapelet parameterization is mathematically convenient for many tasks com-

mon in astronomy and other sciences. We find that the original Cartesian shapelets are

most useful for initial decomposition, because they are separable in x and y, and they

can be integrated within square pixels. The model can then be easily converted into

polar shapelets, whose interpretation is more intuitive.
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Figure 4.2: Cartesian shapelet basis functions. These are perturbations around a Gaussian and
are parameterized by two integers, n1 and n2, which describe the number of oscillations in the x
and y directions respectively. Shapelets are a complete basis set, which can be used to parame-
terize arbitrary galaxy morphologies.

4.2.2 Polar shapelets

Polar shapelets were suggested in Shapelets I as an orthogonal transformation of the

Cartesian basis states. In this thesis, we shall develop the idea further. It will become

apparent that polar shapelets have all the useful properties of Cartesian shapelets, in-

cluding a Gaussian weight function that sets a scale size β, while being separable instead

in r and θ. This renders many operations more intuitive, and polar shapelet coefficients

are easily interpreted for common astronomical tasks as Gaussian-weighted quadrupole,

octopole, etc. moments of the surface brightness.

The “polar Hermite polynomials” Hnl,nr(x) described in Shapelets I are related to

associated Laguerre polynomials
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Lqp(x) ≡
x−qex

p!

dp

dxp
(
xp+qe−x

)
, (4.4)

for nl < nr by

Hnl,nr(x) ≡ (−1)nl (nl!) xnr−nlLnr−nlnl
(x2) . (4.5)

Here nl and nr can be any non-negative integers. Wherever possible in this thesis, we

shall rationalize to the simpler {n, m} notation, where n = nr + nl and m = nr − nl.
Consequently, the only allowed states for polar shapelets are those for which n and m

are both even, or n andm are both odd. Equivalently, n can be any non-negative integer,

and m is any integer between −n and n, in steps of two. This condition will not be

written explicitly alongside every summation, for the sake of brevity; however it will be

assumed throughout.

Note that different conventions have been used to define the Laguerre polynomials,

particularly in mathematical work before the 1960s. The p! term is omitted in many

older textbooks, and caution must be used with the resulting relations. Several useful

recursion relations can be derived to simplify the calculation of the polynomials (e.g.

Boas 1983):

Lq0(x) = 1 (4.6)

Lq1(x) = 1− x+ q (4.7)

Lqp(x) =

(
2 +
q− 1− x
p

)
Lqp−1(x)−

(
1 +
q − 1
p

)
Lqp−2(x) (4.8)

dLqp(x)

dx
= x−1

[
pLqp(x)− (p+ q)Lqp−1(x)

]
(4.9)

dL0p(x)

dx
=

dL0p−1(x)

dx
−L0p−1(x) . (4.10)

We can therefore construct the dimensionful polar shapelet basis functions

χn,m(r, θ;β) ≡
(−1)

n−|m|
2

β|m|+1




(
n−|m|
2

)
!

π
(
n+|m|
2

)
!




1

2

r|m|L|m|n−|m|
2

(
r2

β2

)
e
−r2

2β2 eimθ , (4.11)

and these are plotted in figure 4.3. Note the slight difference in normalisation from BJ02

by a factor of β. This ensures that, as in the case of Cartesian shapelets, our polar shapelet

basis functions are both complete:
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Figure 4.3: Polar shapelet basis functions. The real part of the complex functions are shown in
the top half (m ≥ 0) of the plot, and the imaginary part in the bottom half of the plot. The basis
functions with m = 0 are wholly real. In a shapelet decomposition, an object is modelled by
a sum of these basis functions, with each weighted by a complex coefficient whose magnitude
determines the strength of the component, and whose phase sets its relative orientation.

∞∑

n=0

n∑

m=−n
χn,m(r, θ;β)χn,m(r

′, θ′;β) = δ(r− r′)δ(θ − θ′) (4.12)

(Wünsche 1998) and orthonormal:

∫ 2π

0
dθ

∫ ∞

0
χ∗n,m(r, θ;β) χn′,m′(r, θ;β) r dr = δn,n′δm,m′ , (4.13)

where δ is the Kronecker delta and the asterisk denotes complex conjugation. The sur-

face brightness of a galaxy f(r, θ) in polar coordinates may therefore be decomposed

into
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f(r, θ) =

∞∑

n=0

n∑

m=−n
fn,mχn,m(r, θ;β) , (4.14)

with the polar shapelet coefficients fn,m given by the overlap integral

fn,m =

∫ 2π

0
dθ

∫ ∞

0
f(r, θ) χn,m(r, θ;β) r dr . (4.15)

Recall that n is any non-negative integer, although in practice the series may be truncated

at n ≤ nmax, andm is any integer between n and −n, in steps of two.

4.2.3 Interpretation of complex variables

Both the polar shapelet basis functions χn,m and coefficients fn,m are generally complex

variables. However, note that the basis functions obey the symmetries

χn,−m(r, θ;β) = χ
∗
n,m(r, θ;β) = χn,m(r,−θ;β) , (4.16)

where the asterisk denotes complex conjugation.

In practice, we are interested in real functions f(~x), such as the surface brightness of

a galaxy. Equations (4.13) and (4.16) imply that f(~x) is real if and only if

fn,−m = f
∗
n,m . (4.17)

For example, them = 0 coefficients are wholly real numbers. All others are paired with

their complex conjugate above and below the line m = 0. Thus, even though the coef-

ficients fn,m are generally complex, the number of independent parameters for a real

function is the same as in the case of Cartesian shapelets.

4.2.4 Relation to the Quantum Harmonic Oscillator

Gaussian-weighted Hermite or Laguerre polynomials also are well known as eigenfunc-

tions of the 2D Quantum Harmonic Oscillator. This makes the convenient notation (and

many results) of quantum mechanics instantly available to shapelets. In Shapelets I, it

was found convenient to represent a Cartesian shapelet decomposition in bra-ket nota-

tion as |n1, n2〉. The Cartesian basis functions were raised or lowered into neighbouring

states via Cartesian shapelet ladder operators,

â†1|n1, n2〉 ≡
√
n1 +1 |n1 + 1, n2〉 (4.18)

â1|n1, n2〉 ≡
√
n1 |n1 − 1, n2〉 , (4.19)

plus equivalent expressions for â†2 and â2.
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There is no simple formulation for an equivalent ân and âm to act upon a polar

shapelet decomposition |n,m〉. However, we can construct polar shapelet ladder operators

â†r =
1√
2

(
â†1 + iâ

†
2

)
= 1

2

(
x+ iy − ∂

∂x − i ∂∂y
)

(4.20)

â†l =
1√
2

(
â†1 − iâ

†
2

)
= 1

2

(
x− iy − ∂

∂x + i
∂
∂y

)
(4.21)

âl =
1√
2
(â1 + iâ2) =

1
2

(
x+ iy + ∂

∂x + i
∂
∂y

)
(4.22)

âr = 1√
2
(â1 − iâ2) = 1

2

(
x− iy + ∂

∂x − i ∂∂y
)
, (4.23)

so that

â†r|n,m〉 =
√
n+m+2
2 |n+1,m+ 1〉 (4.24)

â†l |n,m〉 =
√
n−m+2
2 |n+1,m− 1〉 (4.25)

âl|n,m〉 =
√
n−m
2 |n− 1,m+1〉 (4.26)

âr|n,m〉 =
√
n+m
2 |n− 1,m− 1〉 . (4.27)

The Hamiltonian and angular momentum operators in this basis are

Ĥ|n,m〉 =
(
â†râr + â

†
l âl +1

)
|n,m〉 = (n+ 1)|n,m〉 , (4.28)

and

L̂|n,m〉 =
(
â†râr − â†l âl

)
|n,m〉 =m|n,m〉 . (4.29)

Consequently, n corresponds to the Quantum Mechanical energy level andm the angu-

lar momentum quantum number.

Polar shapelet coefficients are thus easily interpreted as Gaussian-weighted quadrupole,

octopole, etc. moments of the surface brightness, where m is the number of tangential

oscillations. A few applications of â and â† ladder operators also describe rotations, di-

lations and all other simple SO2 group transformations to first order in shapelet space.

This particularly includes image shearing, such as that produced by weak gravitational

lensing. We shall further discuss these operations in §4.3.

As a rseult of the uncertainty principle of Quantum Mechanics, which relates po-

sition and momentum, the polar shapelet basis set is invariant under Fourier transfor-

mation (up to a phase factor in and scale change β → β−1). This is most obvious for

the ground f0,0(~x) state, which is a plain Gaussian and therefore trivially invariant. As

described for Cartesian shapelets in Shapelets II, this greatly simplifies the analytic con-

volution and deconvolution of objects from a PSF. Convolution becomes no more than a

bra-ket matrix multiplication, and deconvolution just requires a matrix inversion.
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4.2.5 Conversion between Cartesian and polar shapelets

It is useful to be able to switch between the two forms of shapelets, as each have uses in

different situations. A set of Cartesian shapelet coefficients |n1, n2〉 can be transformed

into polar shapelet representation using the conversion matrix

|nl, nr〉〈n1, n2| = 2−
n
2 im

[
n1!n2!

nr!nl!

] 1
2

δn1+n2,nr+nl

nr∑

n′r=0

nl∑

n′
l
=0

i−m
′

(
nr

n′r

)(
nl

n′l

)
δn′,n1 ,

(4.30)

where the parentheses denote binomial coefficients. Note the correction of the bra-ket

notation since equation (69) in Shapelets I.

This linear mapping is one-to-one and unique upon the lower-half arrays of (n1, n2)

coefficients suggested by figure 4.2 (but not if a full square array is used). It merely ro-

tates the shapelet coefficient axes in a Hilbert space, so no information is lost. Indeed, the

axes happen to become closer to the optimal ones suggested by a Principal Component

Analysis of real galaxy morphologies in the Hubble Deep Field. Discarding the lowest

polar shapelet coefficients rather than Cartesian shapelet coefficients therefore results in

even more efficient data compression.

4.3 Image manipulation and shape properties

4.3.1 Linear transformations

Linear transformations and image manipulation is simple in shapelet space. Let us con-

sider a coordinate transformation ~x→ (1+Ψ)~x+~ǫ, where ~ǫ= (ǫ1, ǫ2) is a small displace-

ment, in units of β, and Ψ is a 2× 2matrix parameterized as

Ψ =

(
κ+ γ1 γ2 − ρ
γ2 + ρ κ− γ1

)
. (4.31)

This is a generalization of the matrix A in equation (2.57), and now includes all SO2

group transformations. The parameters ρ, κ, ǫ and γi correspond to infinitesimal rota-

tions, dilations, translations and shears.

For small transformation parameters, an image transforms as f(~x)→ f ′(~x) ≃ f(~x−
Ψ~x−~ǫ), which can be written as

f ′ ≃ (1 + ρR̂+ κK̂ + γjŜj + ǫiT̂i)f , (4.32)

where R̂, K̂, Ŝi and T̂i are the operators generating rotation, convergence, shears and

translations, respectively. Note that since the shapelet model of an object is smooth and

analytic, these operators are exact and reversible.
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4.3.2 Ladder operators

The operators were expressed in terms of Cartesian shapelet ladder operators in Shape-

lets I. Using equations (4.20) to (4.23), it is easy to write them in terms of the polar

shapelet ladder operators as

R̂ = i
(
â†râr − â†l âl

)
= iL̂

K̂ = 1+ â†râ
†
l − ârâl

Ŝ1 =
1

2

(
â†2r − â2r + â†2l − â2l

)

Ŝ2 =
i

2

(
â†2r + â

2
r − â†2l − â2l

)

T̂1 =
1

2

(
â†r + â

†
l − âl − âr

)

T̂2 =
i

2

(
â†r − â†l − âl + âr

)
. (4.33)

This recovers the results of BJ02 §6.3.2, where a slightly different notation of p = nr

and q = nl is used. They also exponentiate these operators and hence derive recursion

relations for finite dilations, shears and translations in their appendix.

4.3.3 Coefficient mapping in shapelet space

Since the polar shapelet ladder operators have no simple forms for ân and âm, it can be

more convenient to consider the transformations as a mapping of fn,m coefficients. For

example, a rotation is trivially

R̂ : fn,m→ fn,m eimρ . (4.34)

It will be useful later to note that a rotation through 180◦ can be written as

R̂180◦ : fn,m→ (−1)m fn,m . (4.35)

A dilation can likewise be performed in polar shapelet space simply by changing β.

Alternatively, the scale size can be kept fixed by using the mapping

K̂ : fn,m→ (1 + κ) fn,m+
κ

2

√
(n−m)(n+m) fn−2,m

−κ
2

√
(n−m+2)(n+m+2) fn+2,m (4.36)

Note that this dilation operation conserves surface brightness while the area changes by

a factor (1 + 2κ)−1 (this is what happens in weak gravitational lensing). To perform an
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enlargement which instead conserves total flux to first order, change the first (1 + κ) to

(1− κ).

K̂ : fn,m→ (1− κ) fn,m+
κ

2

√
(n−m)(n+m) fn−2,m

−κ
2

√
(n−m+ 2)(n+m+2) fn+2,m (4.37)

Rather than these first order approximations, dilations can also be performed easily

to general order by making use of theCn,m,l convolution formalism in Shapelets I. Firstly,

consider an image represented in shapelet space with scale size α. Clearly, this image

will not be changed by convolution with a δ-function. The δ-function may be modelled

as a χ0,0 state with very small β. However, in theCn,m,l convolution formalism of Shape-

lets I, the final image may be given an arbitrary new scale size γ. If γ is specifically

chosen to differ from the initial scale size by γ = (1+2κ)−1α, the same object is modelled

as before, but using a different shapelet scale size. Finally, multiply γ by (1 + 2κ), to

restore the scale size to its initial value; and the image shrinks or expands in the process.

Shears and translations can be performed using

Ŝ : fn,m→ fn,m
+
γ

4

{√
(n−m− 2)(n−m) fn−2,m+2−

√
(n+m+2)(n+m+4) fn+2,m+2

}

+
γ∗

4

{√
(n+m− 2)(n−m) fn−2,m−2 −

√
(n−m+2)(n−m+ 4) fn+2,m−2

}
(4.38)

and

T̂1 : fn,m→ fn,m+
ǫ1

2
√
2

{√
n+m fn−1,m−1+

√
n−m fn−1,m+1

−
√
n−m+ 2 fn+1,m−1−

√
n+m+2 fn+1,m+1

}
(4.39)

T̂2 : fn,m→ fn,m+
iǫ2

2
√
2

{√
n+m fn−1,m−1−

√
n−m fn−1,m+1

−
√
n−m+ 2 fn+1,m−1 +

√
n+m+2 fn+1,m+1

}
. (4.40)

Other image manipulations can also be represented as mappings of shapelet coeffi-

cients. Changes of flux by a factor B are trivially implemented by the mapping

B̂ : fn,m→ B × fn,m . (4.41)

It is also possible to circularize an object with the mapping

Ĉ : fn,m→ f ′n,m =
{
fn,m ifm = 0

0 ifm 6= 0
(4.42)
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Figure 4.4: Some simple operations applied to a real galaxy image, by using the polar shapelet
ladder operators or coefficient mappings as described in the text. The central image is the original
galaxy. Starting at the bottom-left and proceeding clockwise, the other images show a rotation of
40◦, dilation of κ = 1.3, shears of γ = 7%, translations of 2 1

2
pixels, circularisation and reflection

in the x-axis.

or to flip an object’s parity by reflection in the x-axis, using

P̂ : f ′n,m = f
∗
n,m . (4.43)

Combining this P̂ with the rotation operator allows reflections to be performed in any

axis. The action of these operators is demonstrated on a real galaxy image in figure

4.4. Note that it is ideal to increase nmax by adding extra coefficients (set to zero) when

applying operators that map coefficients onto ones that had previously been truncated.

Not much can be done about the coefficients with negative n that do not exist.
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4.3.4 First-order statistics of galaxy shapes

Here we extend the work of Shapelets I using weighted combinations of shapelet coeffi-

cients to form estimators of galaxy shapes. We find the interpretation of polar shapelets

more intuitive and the expressions below are usually more simple than their Cartesian

equivalents. For example, the rotationally invariant part of an object is isolated into

its m = 0 coefficients. The linear offset of an object from the origin is described by its

m = ±1 coefficients and the ellipticity of an object by its m = ±2 coefficients. In these

cases, the magnitude of the coefficients indicate an amount and the phases a direction.

Photometry

The most basic quantities to measure for an object f(x) are its total flux (photometry),

centroid position (astrometry) and size. Expressions for these, as weighted combinations

of Cartesian shapelet coefficients, were given in equations (26) to (28) of Shapelets I.

Either by performing the same integrals directly in polar coordinates,

∫ 2π

0

∫ ∞

0
χn,m(r, θ;β) r drdθ = 2

√
πβ δm0 , (4.44)

or by transforming the Cartesian shapelet sums into polar shapelet space, it is easy to

show that the total flux of an object F is

F ≡
∫
f(~x) d2x = (4π)

1

2β

even∑

n

fn0 , (4.45)

where the sum is over only even values of n, because odd values do not have an m = 0

coefficient. Notice that it is only these rotationally-invariant basis functions that con-

tribute to the total flux. All other states have positive and negative regions which cancel

out under integration around θ. A consequence of this is that it is easy to circularise an

object by merely setting to zero allm 6= 0 coefficients.

Astrometry

It can similarly be shown that the centroid (xc, yc) is

xc ≡
∫
xf(~x) d2x∫
f(~x) d2x

= Re

{
(8π)

1
2β2

F

odd∑

n

(n+ 1)
1
2 fn1

}
(4.46)

and

yc ≡
∫
yf(~x) d2x∫
f(~x) d2x

= Im

{
(8π)

1
2β2

F

odd∑

n

(n+ 1)
1
2 fn1

}
(4.47)
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Here the summation is over only odd values of n, because only these have the m = ±1
coefficients that behave in the desired manner under rotation.

Size and ellipticity

Measures for the size and ellipticity of an object can be derived from the unweighted

quadrupole moments of the object, defined as

Fij ≡
∫
xixjf(x)d

2x . (4.48)

Using the polar ladder operators from equations (4.20–4.23) to represent xixj , one can

show that the rms radius R of an object is given by

R2 ≡
∫
|~x|2f(~x) d2x∫
f(~x) d2~x

(4.49)

=
F11 + F22
F

=
(16π)

1

2β3

F

even∑

n

(n+1) fn0 . (4.50)

The unweighted complex ellipticity of the object is then given by

ε ≡ F11 − F22 +2iF12
F11 + F22

=
(16π)

1

2β3

FR2

even∑

n

[n(n+2)]
1

2 fn2 (4.51)

Note that the complex shear notation of Blandford et al. (1991) arises here naturally.

All of these estimators correspond to unweighted quantities and converge for any galaxy

with a shapelet spectrum steeper than n−2. This includes both exponential and de Vau-

couleurs profiles, as long as nmax is kept sufficiently low that surrounding noise is not

being modelled by the high-n coefficients. It is therefore important to have a reason-

able model of the noise per pixel. The error on series due to truncation at nmax can be

calculated using any of a range of methods for Taylor series in e.g. Boas (1983).

It may even be the case that shapelets can be used to calculate these basic astronom-

ical measures in a way that is more robust to noise than traditional techniques using

isophotal cutoffs. The non-local shapelet fitting procedure recognises correlations be-

tween nearby pixel values, effectively summing their S/N, and can thus count object

flux in extended wings that would be beneath the detection threshold in any individ-

ual pixel. Although the shapelet size measure R is an integrated rms size rather than

a FWHM, a simple example of this is illustrated in figure 4.11. Shapelets give a larger

estimate of size for many HDF galaxies than that expected from the equivalent SEX-

TRACTOR detection. There are few estimates smaller than expected, suggesting that this

really is measuring the extended wings. Shapelets could therefore be very useful for un-
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ambiguous photometry and astrometry measurements in many branches of astronomy.

One idea would be to find objects using wavelets, then decompose them and analyse

them using shapelets.

4.3.5 Higher-order galaxy morphology diagnostics

Since the shapelet basis functions form a complete set, the shapelet decomposition of an

object encodes all of the information available about its shape. It should therefore be

possible to find other combinations of shapelet coefficients which distinguish between,

and quantitatively classify, different galaxy morphologies. A galaxy’s morphology is

the result of its recent evolution; and two galaxies of a similar appearance are likely to

be located in similar physical environments, or to have undergone similar merger and

star formation events. Distinct galaxy populations can also be separated: perhaps into

types which better trace the underlying mass distribution; perhaps into those which

typically provide more reliable shear estimators. We shall also require such morphology

diagnostics in chapter 5, to verify that our simulated images contain morphologically

realistic objects.

The Hubble tuning-fork is the classic scheme for classifying galaxy morphologies

(Hubble 1926, Sandage 1961, de Vaucouleurs 1959). Despite its wide acceptance, how-

ever, its morphology indices are unnaturally discrete, and they bear little resemblance

to physical parameters in theoretical models of galaxy formation. Aside from the basic

bulge/disc decomposition, the Hubble tuning fork fails to uniquely identify or distin-

guish between objects involved in very different modes of evolution. The number and

pitch angle of spiral arms are now believed to be transient phenomena; the presence of

a bar is of debatable significance; and many of the original diagnostics depend strongly

upon seeing or distance to the source. Foremost, however, the Hubble sequence com-

pletely fails to classify 46% of objects beyond z ≃ 0.6, precisely the regime in which most

weak lensing source galaxies are located. Rather than simply mimicking the Hubble

tuning-fork, we shall therefore require a brand new classification scheme.

We begin with the premise that useful morphology estimators can be written linearly

in shapelet space as

Q =
βs

F

∑

n,m

wn,mfn,m , (4.52)

wherewn,m are arbitrary weights. We then restrict ourselves to using those combinations

which are independent of the choice of β, to at least first order. This ensures that the

iteration in §4.5.6 does not affect, to any great extent, the final result. Setting ∂Q∂β = 0 and

using the right-hand side of equation (4.37) as
∂fn,m
∂β , it is easy to show that this implies
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wn,m =
2s√

(n+m)(n−m)
wn−2,m

+

√
(n−m− 2)(n+m− 2)
(n+m)(n−m) wn−4,m , (4.53)

where the second term should be ignored if it refers to non-existent states with nega-

tive n. The normalisation of w0,0 is arbitrary, and can be set to ensure independence to

changes of object flux. Notice that all quantities so formed mix coefficients with only

one value of |m|. This value can be chosen to give Q the desired properties under rota-

tion. Setting s =1, 2 or 3 in fact recovers precisely the flux, centroid or (un-normalised)

quadrupole moments. This proves that these are the only β-invariant linear quantities

with such dimensionality. Equations (4.45), (4.46), (4.47) and (4.50) are therefore not only

independent of β to first order, which was all that was required in section §4.3.4, but in

fact independent to all orders.

We can extend the above sequence by raising s further. Setting s = 5 and m = 0

gives the 2D unweighted kurtosis of the image, producing an estimate of the object’s

concentration. Unfortunately, setting s this high creates a series of shapelet coefficients

that does not converge for realistic de Vaucouleurs or exponential galaxies.

Principal Component Analysis (PCA; e.g. Francis & Wills 1999) of a galaxy popu-

lation can be used to find linear combinations of coefficients which do converge, and

which most efficiently encode its shape information. This technique reduces the dimen-

sionality of the parameter space needed to differentiate between galaxies, and hence

determines their most statistically significant shape measures. For example, the first five

principal components of the HDF galaxies in figure ?? can be combined to recover 90%

of their shape information. However, as is always the case with this method, the in-

terpretation of such results is problematic. Even the combinations of the first principal

components are complicated, and an association between their shapes and the galaxy’s

physical properties or environment remains elusive. Kelly & McKay (2003) achieved

more success with the same analysis upon galaxies in the Sloan Digital Sky Survey. Since

all of the SDSS galaxies have known redshifts, it was possible in each case to set β to a

constant physical scale of 2 kpc. This produced better-controlled shapelet decomposi-

tions, and galaxies of different Hubble types separated in shapelet space. However, no

work has yet associated the principal components of a shapelet decomposition to tangi-

ble, physical properties.

An alternative approach is to copy other existing morphology estimators, which

have already been developed and calibrated against such physical properties. Many

attempts have been made to revise the Hubble sequence or to invent new classification

schemes (e.g. Simard 1998; Bershady et al. 2000; Conselice et al. 2000; van den Bergh
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2002; Conselice 2003). Indices of concentration, asymmetry and clumpiness have been

shown to correlate respectively with evolutionary type, galaxy merger history and star

formation rates. However, it is admitted that these parameters are currently calculated

in a rather ad hoc manner. Fortunately, very similar quantities can be recreated from

weighted combinations of shapelet coefficients, using the natural form and symmetries

of the shapelet basis functions.

Concentration

Bershady et al. (2000) define a concentration parameter

C ≡ 5× log
(
r80
r20

)
, (4.54)

where r80 and r20 are the radii of circular apertures containing 80% and 20% of the ob-

ject’s total flux. This correlates well with a galaxy’s Hubble type (Bershady et al. 2000)

and also its mass (Conselice et al. 2002). To represent this quantity using shapelets, it

will be necessary to integrate an object’s flux out to a finite distance R. Evaluating the

integral of all the basis functions in turn gives

∫ 2π

0

∫ R

0
f(r) r drdθ = 4

√
πβ

even∑

n

(−1)n/2 fn,0 In , (4.55)

where

In =
1

2β2

∫ R

0
Ln
2

(
r2

β2

)
e
−r2

2β2 r dr . (4.56)

A recursion relation for this integral may be found by integrating by parts once, then

applying equation (4.8) n times:

In = 1−Ln
(
R2

β2

)
e
−R2

2β2 − In−1 − In−2 − . . .− I0 . (4.57)

A less practical but closed form for In may be derived by repeatedly substituting

equation (4.57) into itself, or by directly integrating equation (4.56) by parts n times,

In = 1−Ln
(
R2

β2

)
e
−R2

2β2 + 2

[n/2]∑

k=1

(−1)k
{
1−Ln−2k

2

(
R2

β2

)
e
−R2

2β2

}
. (4.58)

This can finally be evaluated for various values of R, to find r80 and r20 as required.

Alternatively, we have noticed that a ratio of the two existing shapelet scale sizes,

R2 and β, is also rather effective (although this is obviously not independent of β). This

makes for a somewhat simpler calculation and we propose this estimator instead. How-

ever, further work will need to be done to calibrate it to the physical properties of galax-

ies.
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Asymmetry

Conselice et al. (2000) define an asymmetry parameter

A180 ≡
∑

pixels |f(x, y)− f180
◦
(x, y)|

∑
pixels f(x, y)

, (4.59)

where the superscript denotes an image rotated through 180◦. A term dealing with the

background noise and sky level has been omitted here, these having been already dealt

with during the shapelet fitting procedure. Asymmetry correlates with star formation

rate (Conselice et al. 2000) and high asymmetry values often indicate recent galaxy inter-

actions or mergers.

The sums over pixels can firstly be replaced with analytic integrals over the now-

smooth shapelet models. Representing the models as a shapelet expansion and noting

from equation (4.35) that a rotation through 180◦ merely changes the sign of all shapelet

coefficients with oddm, it may be shown that

A =
1

F

∫ 2π

0

∫ ∞

0

∣∣∣∣∣
∑

n,m

[1− (−1)m] fn,m χn,m(r, θ)
∣∣∣∣∣ r dr dθ (4.60)

=
1

F

∑

n,m

(
〈n,m| (1̂− R̂180◦)† (1̂− R̂180◦) |n,m〉

)1/2
. (4.61)

Using the orthonormality condition (4.13), to take the integral inside the summation and

evaluate it, we find

A =

√
2

πF

odd∑

m,n

|fn,m| . (4.62)

Estimators of asymmetry under rotations of 120◦ or 90◦ can be formed instead by sum-

ming only those shapelet coefficients withm not divisible by 3 or 4 respectively.

Clumpiness

A clumpiness parameter can also be quickly calculated in shapelet space, using the formula

for convolution with a Gaussian given in Shapelets I.

S ≡ 10
F

∑

n,m

(
〈n,m| (Ĝσ − 1̂)† (Ĝσ − 1̂) |n,m〉

)1/2
, (4.63)

where Ĝσ is the Gn,m operator for convolution with a Gaussian of width σ given in

Shapelets I. This can be written in terms of polar shapelets, but is inelegant and provides

less clarification that the notation in Shapelets I, so we omit it here.
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Curvature

As noticed by Irwin & Shmakova (2003), the relative phases of the quadrupole and sex-

tupole moments can be used as an indication of curvature. After ellipticity, the sextupole

moments are the first additional terms induced in the shape of an object by second-order

gravitational lensing. (Goldberg & Natarajan (2002) also advocate the use of octopole

moments). If the sextupole moments are aligned in the correct way to the quadrupole

ellipticity, shapelet models begin to form arclets, as are frequently seen near massive

clusters. While the localised nature of shapelet basis functions means that they are not

ideally suited to model highly extended arcs, they may be used in this way to iden-

tify arclet candidates. With the addition of this second-order technique, shapelets may

also be more sensitive than quadrupole-only shear measurement methods in the slightly

non-linear lensing regime around clusters, and to local gradients in their gravitational

potential due to substructure.

We can combine either the Gaussian-weighted (a33) or unweighted (setm=3 and s=

4 in equation (4.52)) sextupole moment, S, with the corresponding quadrupole moment,

Q, to form the curvature estimator

H =
|Q|
F 2
[
Re{S′} − Im{S′}

]
, (4.64)

where S′ = Se3iΘ, a prior rotation by the angleΘ = [(−θS − π2 +
θQ
2 )modπ2 ]. This ensures

that it is their relative phase, and that both the real and imaginary parts of S′ are positive.

(if they aren’t, curvature should be pointing in the opposite direction anyway!) If H is

positive, the object is curved and Θ is the direction towards the centre of curvature. IfH

is negative, the object is said to be “aligned”.

Shear-invariant quantities

Only two different linear combinations of shapelet an object’s shapelet coefficients are

invariant under any shear:

Γ1 ≡ (4π)
1

2β
∑
(f0,0 + f4,0 + f8,0+ . . . ) (4.65)

Γ2 ≡ (4π)
1

2β
∑
(f2,0 + f6,0 + f10,0 + . . . ) . (4.66)

Their sum is of course the total flux F , which is also independent of the choice of scale

size β.

Dividing Γi by F renormalises these quantities to be invariant under changes of flux.

It would be useful if a shear estimator could be formed such that P γ = Γi/F , in or-

der to avoid the “Kaiser flow” of this quantity in the size vs magnitude plane (Kaiser

2000), due to the fact that only the post-shear P γ can be measured from real data. Un-
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fortunately, there is no linear combination of shapelet coefficients that is simultaneously

independent of flux, β and the level of applied shear.

4.4 Shapelet decomposition of real data

4.4.1 Additional considerations needed for real data

In this section we shall describe an improved method for finding and decomposing ob-

jects in real data. The overlap integrals (4.3) and (4.15) are defined only for smooth

functions, but real images are complicated by pixellisation, PSF convolution and ob-

servational noise. In order to overcome these problems, we shall adopt a somewhat

different approach to the shapelet decomposition.

Our new method applies precisely the same PSF convolution and pixellisation to the

basis functions as have acted upon photons en route to the telescope and detector. Hav-

ing mimicked these processes, the altered basis functions are then fitted to the data using

a least-squares method. This is an important advance, particularly for small galaxies or

high-n coefficients that correspond to poorly-sampled basis functions with many oscil-

lations per pixel. Least-squares fitting also enables us to simultaneously deconvolve the

image from the telescope’s PSF, and to deal linearly with numerical effects that introduce

slight non-orthogonality into the shapelet basis functions.

4.4.2 Object detection

Objects are first detected in an image using SEXTRACTOR (Bertin & Arnouts 1996). Its

friends-of-friends algorithm avoids the biases towards selecting objects with a particular

size or orientation that particularly affect weak lensing analysis (see e.g. BJ02 §8). These

biases are difficult to avoid with matched-filter detection methods like HFINDPEAKS

(Kaiser, Squires & Broadhurst 1995). To detect objects in the Hubble Deep Field, we

have adapted the SEXTRACTOR convolution mask and detection parameters from those

used by Williams et al. (1996). In particular, we use a comparatively low S/N detection

threshold, DETECT THRESH, of 1.3. This affords recovery of faint galaxies and mini-

mizes incompleteness, at the expense of many false-positive ‘detections’ of noise, which

need to be flagged and filtered out later (see §4.5.6). Stars with CLASS STAR > 97% are

immediately discarded, as we wish to model only galaxies.

Small postage stamp regions are then extracted around each object. After experiment-

ing on various data sets, we have found the SEXTRACTOR segmentation map highly

sensitive to input settings and will use it only to identify background pixels rather than

objects themselves. Our postage stamps are square, even when the object is highly ellip-

tical, and 3×A+5 pixels on a side, whereA is the SEXTRACTOR FWHM size parameter.

This postage stamp is small enough to isolate most galaxies in typical data, but large

enough to ensure that the shapelet basis functions are close to zero at its boundaries.



4.4. Shapelet decomposition of real data 95

If these were not contained entirely within the postage stamp, the shapelet coefficients

would become unconstrained during the fit, producing anomalous results.

For the Hubble Deep Field images, an inverse variance noise map is available that

shows the noise in each pixel, as determined by the variation in observed flux between

different exposures. If an inverse variance map is not available, our prescription to ex-

tract a postage stamp also leaves a small border of pixels around the edge of the image,

which can be conveniently used to estimate the local background noise level. This level,

multiplied by identity matrix, should then be used as the covariance matrix V in equa-

tion (4.75).

4.4.3 PSF deconvolution

Real data is inevitably seen after convolution with a telescope’s Point Spread Function,

due to atmospheric turbulence or ‘seeing’ (for ground-based observatories), aperture

diffraction at the primary mirror, and imperfect tracking or optics optics within the cam-

era. The combination of these effects can be measured from the non-pointlike size and

shape of stars observed in an image. Shapelets I presented the matrix operation for

convolving an image with a Gaussian PSF in shapelet space. Shapelets II extended this

derivation to a general PSF and demonstrated PSF deconvolution by matrix inversion.

However, our new least-squares fitting method allows an elegant way to sidestep this

potentially slow and numerically unstable method.

Our alternative approach is to convolve the basis functions with the PSF model in ad-

vance, and then to fit the new basis set to the data. The returned shapelet model is auto-

matically deconvolved from the PSF. Fitting is important with this method, because the

convolved basis functions are no longer necessarily orthogonal: amongst other things,

overlap integrals may not therefore conserve the flux.

Figure 4.5 shows a 10×oversampled TINYTIM (Krist 1997) model of the WFPC2 PSF,

with charge diffusion added. This diffraction-limited PSF is very peaky and has ex-

tended wings: it is not the type of function most compactly represented using shapelets.

It is shown in the figure with logarithmic colour scales and as a shapelet decomposition

up to nPSF
max = 15. This is sufficient to accurately capture the core and the first two diffrac-

tion rings (which are already more than two orders of magnitude below the maximum)

but does not extend far into the low-level wings. In principle, this could be further ex-

tended at a cost to processor time by using more shapelet coefficients. However, there

are limits upon the accuracy of TINYTIM (Krist 1995) model, and the four diffraction

spikes from the secondary spider vary anyway as a function of CCD position.

4.4.4 Pixellisation

While the shapelet basis functions are smooth and continuous, typical astronomical data

is discrete. To match the two, one must either smooth the data or pixellate the basis
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Figure 4.5: Shapelet model of the TINYTIM (Krist 1995) WFPC2 PSF plus charge diffusion. The
top plot shows a horizontal slice through the centre of the PSF; the bottom shows the moduli of
its polar shapelet coefficients to nmax = 15. Note that the amplitude scales are logarithmic: the
core is actually modelled very successfully out to the second diffraction ring, although for speed
we do not capture the wings.
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functions. One approach is to resample the data with a smaller pixel size, and smooth

it by interpolating between the new pixels. However, this is very slow and requires an

interpolation scheme to be defined. Rather than smooth the data, a different approach

would be to discretise the smooth shapelet basis functions. This reduces the integrals

in equations (4.3) and (4.15) to sums over pixel values, which are fast to compute but

which are no longer analytically exact. One cannot simply use the central value of the

basis function in each pixel, because this gives essentially random numbers for basis

states whose oscillations are on the same scale as (or smaller than) the pixel size. In

particular, the basis functions would no longer be guaranteed to remain orthonormal,

placing a fundamental limit upon the accuracy of the model and quantities like its flux.

We are not going to be able to avoid this entirely for real data, and least-squares fitting

overcomes some concern, however it would be nice to minimise this effect as much as

possible.

Fortunately, the Cartesian basis functions can be analytically integrated within rect-

angular pixels. We therefore work with these and only later convert the model to a

polar shapelet representation, using equation (4.30). First consider the one-dimensional

Cartesian shapelet basis functions

φn(x) ≡
[
2nπ

1

2n!β
]−1
Hn

(
x

β

)
e
− x2

2β2 . (4.67)

from Shapelets I. The two-dimensional basis functions are simply the product φn1,n2 ≡
φn1(x)φn2(y). Integrating by parts and using two well-known identities (see e.g. Boas

1983)

Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x) (4.68)

and

dHn−1(x)
dx

= 2(n− 1)Hn−2(x) , (4.69)

one can obtain the recurrence relation

In ≡
∫ b

a
φn(x) dx (4.70)

= −β
√
2

n

[
φn−1 (x)

]b
a
+

√
n− 1
n
In−2 . (4.71)

Finally, note that

I0 =
π
1

4

2

[
erf(x)

]b
a

and (4.72)
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I1 = −
√
2
[
φ0 (x)

]b
a
. (4.73)

This supplies all the necessary integrals. Since the 2D Cartesian basis functions are sep-

arable in x and y, it is easy to extend this derivation to integrate within square CCD

pixels:

In1,n2 =

∫ b1

a1

∫ b2

a2

φn1(x)φn2(y) dx dy = In1 × In2 (4.74)

where, if there is no “dead zone” around the edge of a pixel, (bi − ai) is the angular size

of a pixel. A pixel border that contains electronics and is therefore unresponsive to light

can be included by altering the limits on the integral.

Note that even integration does not ensure exact orthogonality of the basis functions,

because the fact that
∫
φij d2x is calculated correctly does not imply that

∫
φijφkl d

2x= 0.

Gram-Schmidt orthonormalisation could be performed on the discrete basis functions to

find a linear combination of shapelet states that satisfy this condition. For our purposes,

this slow operation is unnecessary because we then determine a galaxy’s shapelet coef-

ficients by fitting the functions to the data with a least-squares method. As long as the

noise is unbiased, estimators like object flux will therefore be unbiased too.

4.4.5 Least-squares fitting

We have now convolved the shapelet basis functions with the telescope’s Point Spread

Function (PSF), and integrated them within pixels. This mimics the processes acting on

photons en route to the CCD detector. We shall now fit shapelet coefficients to the data

using a linear least-squares method

a = (MTV −1M)−1MTV −1f , (4.75)

where a is a vector of the derived shapelet coefficients, f the flux in each pixel arranged

as a data vector, V the covariance matrix between pixel values and M is a matrix of

each shapelet basis function evaluated in each pixel (see e.g. Lupton 1993). It is even

possible to add a constant to the set of basis functions in order to fit (and thus remove)

the background level; or a plane with variable slope in order to cope with either poor

flat fielding or local background gradients. Although these extra basis functions is not

strictly orthogonal, the technique works well in practice as long as there are sufficient

pixels in the postage stamp that contain only background light.

If the noise per pixel is known, 1σ confidence limits can also be recovered on all of

the assigned coefficients. If a complete pixel noise map is available (e.g. from multiple

exposures stacked using DRIZZLE software (Fruchter & Hook 2002), this can be used to

down-weight the contribution from noisy pixels where cosmic rays or hot/cold pixels

were present in some of the exposures. As will be shown in §4.5, a fit achieving a reduced
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χ2 of unity has successfully modelled an object but smoothed over observational noise.

Note that this method would be able to use the full covariance matrix between observed

pixel values, although this information is generally not available. We are forced to ignore

pixel-to-pixel correlations and use a diagonal matrix of pixel noise values for V . In real

data, whether because of DRIZZLE or atmospheric seeing, the noise in adjacent pixels

is indeed correlated. This simplification can therefore have a slight effect on statistics

measured from very faint objects on the limits of detection (see chapter 5).

Using equation (4.30), we can finally convert the Cartesian shapelet model into polar

shapelets for easier interpretation. For higher data compression ratios, shapelet coeffi-

cients with low absolute values, or low significance, can then be discarded as described

in Shapelets I. If necessary, Principal Component Analysis of a population ensemble can

improve the data compression still further. Our new technique works very well, pro-

ducing successful PSF deconvolution and excellent image parameterization, as demon-

strated in figure 4.1. It is an important advancement, particularly for small galaxies or

high-n coefficients that correspond to oscillations within single pixels. Least-squares fit-

ting enables us to simultaneously deconvolve the image from the telescope’s PSF, take

account of pixellisation and deal linearly with any slight non-orthogonality of shapelet

basis functions.

4.5 Optimising the decomposition

4.5.1 The importance of a suitable choice for the shapelet sc ale size

Although the shapelet decomposition is linear in fn,m, we need to specify in advance the

centre of the basis functions ~x0 and their scale size β. Since we shall use the least-squares

fitting method, we also need to determine in advance at what value of nmax to truncate

the series. The number of statistically significant shapelet coefficients depends particu-

larly upon the choice of β. For reasonable choices of the centre and scale size, the shape

information of a galaxy is concentrated within only the first few coefficients, and a high

image compression ratio is possible. However, if β is not well-matched to the image,

or ~x0 is improperly centred, the series will require many more shapelet coefficients to

capture similar shape information.

In this section, we shall first use some properties of polar shapelets to describe the

effect that these choices have on the shapelet decomposition. We shall then demonstrate

how nmax, β and ~x0 may be chosen with a practical algorithm to optimise image recon-

struction.

4.5.2 Radial profiles

Our discussion may be simplified by initially considering an object with concentric and

circular isophotes. This can be parameterized purely by its radial profile and thus re-
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χ0,0(r) =
1
β
√
π
e
−r2

2β2

χ2,0(r) =
−1
β
√
π

[
1− r2

β2

]
e
−r2

2β2

χ4,0(r) =
1
β
√
π

[
1− 2 r2

β2
+ 12

(
r2

β2

)2]
e−r

2/2β2

χ6,0(r) =
−1
β
√
π

[
1− 3 r2

β2
+ 32

(
r2

β2

)2
− 16

(
r2

β2

)3]
e−r

2/2β2

χ8,0(r) =
1
β
√
π

[
1− 4 r2

β2
+ 3

(
r2

β2

)2
− 23

(
r2

β2

)3
+ 1
24

(
r2

β2

)4]
e−r

2/2β2

χ10,0(r) =
1
β
√
π

[
1− 5 r2β2 + 5

(
r2

β2

)2
− 53

(
r2

β2

)3
+ 5
24

(
r2

β2

)4
+ 1
120

(
r2

β2

)5]
e−r

2/2β2

Table 4.1: The first few rotationally-invariant (m = 0) polar Shapelet basis functions.

duces the task to a one-dimensional problem. It also creates obvious symmetries which

simplify the selection of β. Averaging an object’s surface brightness f(~x) in concentric

rings about its centre gives its radial profile

f(r) =
1

2π

∫ 2π

0
f(r, θ) dθ . (4.76)

If the object has been decomposed into polar shapelets as in equation (4.15), it is easy to

show that it can be written as

f(r) =

even∑

n

fn0 χn0(r) . (4.77)

This simple expression results from the fact that only the m = 0 states are invariant

under rotations. Computing the object profile in polar shapelet state is very simple as it

amounts to summing overm = 0 states, which reduce to

χn0(r) =
(−1)n/2
β
√
π
Ln
2

(r2/β2)e−r
2/2β2 , (4.78)

where n is even and Lq(x) = L
0
q(x) is a Laguerre polynomial.

Real galaxies tend to have similar and well-defined radial profiles. A good fit for

spiral galaxies is obtained with the exponential profile, f(r) ∝ e−r/r0 , where r0 is a char-

acteristic radius. The de Vaucouleurs profile f(r) ∝ e−(r/r0)0.25 provides a good fit to

elliptical galaxies. Figure 4.6 shows the radial reconstruction of an exponential profile,

by numerically calculating the integral in equation (4.15). The top panel shows the re-

construction for several values of the shapelet scale β, in units of r/r0. In all cases, only

states with n ≤ nmax = 20 were used in the reconstruction.

As can be seen in figure 4.6, the quality of the reconstruction depends upon the

choice of β. For small values (β <∼ 0.4r0) the reconstruction is oscillatory and cuts off
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Figure 4.6: Decomposition of an exponential profile into radial polar shapelets. Top panel: The
thick dark line shows the input exponential profile. The reconstructed profile is shown for differ-
ent values of the shapelet scale β with nmax = 20. Bottom: the corresponding shapelet coefficient
profile fn0 vs shapelet order n.

the profile at large radii (r <∼ 1.5r0). For large values (β >∼ 0.8r0), the reconstruction fails

to reproduce the cusp at small radii (r <∼ 0.4r0) and exceeds the true profile at r ≃ 0.6r0.
This excess or truncation of the wings is due to an unfortunate mis-match in the pro-

files of typical galaxies and these useful basis functions. The ringing, particularly at

low β, is an inevitable consequence of using a complete basis set rather than an over-

complete one. In this regime, a shapelet decomposition of a spiral galaxy will involve

the subtraction of one relatively large shapelet coefficient from another. However, for

intermediate values (0.5r0 < β < 1.1r0), the reconstruction is good throughout the range

0.1r0 <∼ r <∼ 2.8r0. This range can of course be expanded by including shapelets of higher

orders. As nmax→∞, the input model can be recovered with arbitrary precision.

We return to the case of real (non-concentric) galaxies in figure 4.7, which shows a
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spiral galaxy from the HDF. Its spiral arms make fitting a de Vaucouleurs profile trou-

blesome, but r0 is approximately 12 pixels. The left-hand column shows the increasing

complexity of a shapelet model with increasing nmax. In this column, β is allowed to

vary in order to minimise the least-squares difference between the model and the HDF

image, shown at the bottom. Notice in particular the rotation in the object’s core elliptic-

ity, as more shapelet coefficients resolve the spiral arms (2 ≤ nmax ≤ 8). KSB’s ellipticity

measurement would be equivalent to that from the decomposition with nmax = 2, how-

ever this ellipticity is not well determined! The middle column shows shapelet decom-

positions with varying β, but fixed nmax = 20. Their residuals are plotted in the right

hand column. As in figure 4.6, we find that the best overall image reconstruction uses

0.5r0 <∼ β <∼ 0.7r0. This is perhaps at the low end of the range suggested by figure 4.6

because of the extra high-frequency detail that needs to be modelled within the spiral

arms.

4.5.3 Shapelet spectrum

The corresponding behaviour in shapelet space is apparent in the bottom panel of fig-

ure 4.6. The fn,0 coefficients can be thought as the ‘profile’ of the galaxy in shapelet space

or ‘shapelet spectrum’. For low values of β the shapelet profile is very flat, showing that

the power is distributed almost evenly throughout all orders. For β = 0.5r0, the coeffi-

cients an,m are seen numerically to be ∝ (n+ 1)−2. This steepness is vital to ensure the

convergence of the galaxy shape estimators formed from series of shapelet coefficients

in §4.3.4. Convergence is optimum at β ≈ 0.8r0, with an,m ∝ (n+ 1)−2.5. For higher val-

ues of β, the signs of an,m begin to alternate, and the convergence of the absolute values

falls below ∝ (n+ 1)−2 once more at β ≈ 1.1r0.
Thus we have found a fairly wide range of β values that produce a good shapelet re-

construction, with information suitably concentrated for the series in §4.3.4 to converge,

and an acceptable value of nmax for practical computation. Of course, the convergence

of the shapelet series is poor with values of β outside this range, and impractically large

values of nmax would be required for faithful image reconstruction. We shall now ex-

plore practical ways to find β values that lie within this range, and to hone our choice

towards the optimum value.

4.5.4 Optimisation methods in the literature

There exist several distinct philosophies in the literature for the practical selection of

nmax and β in related methods. They differ both in the goals set for for an ideal decom-

position and the way to achieve it.

• Shapelets I suggested a geometrical argument using θmin, θmax: the minimum (PSF

or pixel) and maximum (entire image) sizes on which information exists. This
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Figure 4.7: Shapelet decomposition of a real spiral galaxy in the HDF. The best-fit de Vaucouleurs
profile has r0 ≃ 12 pixels. The left hand column shows the shapelet model building up in com-
plexity with increasing nmax. For each of these, β is varied to minimise the least squares differ-
ence between the data and the model. The two right hand columns show the effect of varying β
with fixed nmax = 20. The residual between these models and the original, in the bottom-right, is
smallest with β ≃ 0.5r0.
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could be iterated using functional rules on ~x0 and r2f as defined by shapelet coeffi-

cients. However, the coefficients change as a function of nmax; nor is it clear what

the rules should be.

• Van der Marel & Franx (1993) fit 1D Gauss-Hermite polynomials to spectral lines.

They arbitrarily fix nmax = 6, finding this sufficient probably because their spec-

tra have relatively high S/N and the lines a nearly Gaussian profile. ~x0 and β are

obtained from a best-fitting Gaussian. This also determines a0 and in 1D is equiva-

lent to constraining a1 = a2 = 0, i.e. the derivatives of the Gaussian with respect to

~x0 and β. The number of variables is reduced and the problem rendered tractable.

Unfortunately, this does not help us in 2D because while both a1±1 can be forced to

zero by varying ~x0, no unique recipe can be found for setting the three n = 2 states

using only one value β.

• Van der Marel et al. (1994a,b) relax the constraint on a1. This is an improvement

since a1 is only the first term of an expression for the centroid, expanded using

all odd an in equations (4.46) and (4.47). Without the higher order corrections,

the true object centroid is moved slightly from the origin: amongst other things

rendering rotations and shear operations more complicated. Instead, they set ~x0

from theoretical rest wavelength of a line. Unfortunately, astrometric calibration

clearly cannot be done with such accuracy. Nor has the n= 2 problem been solved.

• Kaiser, Squires & Broadhurst (1995) combine fitting with a stand-alone object de-

tection algorithm, HFINDPEAKS. Translated into shapelet language, their approach

is roughly equivalent to placing ~x0 at data peaks then fitting a 2D Gaussian with

width β such that S/N ν in a00 is maximised.

• Bernstein & Jarvis (2002) propose a similar approach. They prescribe β by requir-

ing a20 = 0, while moving x0 to ensure a1±1 = 0. Higher coefficients are then de-

termined afterwards by linear decomposition. To first order, the β constraint is

equivalent that for HFINDPEAKS. This may indeed be the optimal decomposition

for weak lensing as the shear signal in the quadrupole moments gets concentrated

into just one number. a22 elegantly happens to be ∝ γ, and automatically has max-

imum S/N for shear measurement after PSF deconvolution. However, a predispo-

sition towards particular states for one purpose often leads to poor overall image

reconstruction, so this is not necessarily ideal for all applications.

• Marshall (in prep.) describes a fully Bayesian approach to applying the shapelet

transform in the context of image reconstruction. Here, ~x0, β and nmax are varied in

order to maximise the evidence (the probability of observing the data, marginalised

over all shapelet coefficients). At high S/N, this method gives a value of β which

approaches the same as that from our χ2 method below, but otherwise tends to
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prefer a fractionally larger β, conservatively eliminating some ‘noise’ in favour of

a smoother image reconstruction. However, this is computationally slow, a serious

issue when analysing several thousand galaxies in a catalogue.

4.5.5 Minimising χ2 of image reconstruction

Our solution to the problem of nmax, β selection is to optimise overall image reconstruc-

tion, as defined by reduced χ2. This is ideal for many applications, including accurate

PSF deconvolution. However, it unavoidably dilutes information content between more

coefficients than the methods of KSB and BJ02. Fortunately, the power of shapelets is that

these additional coefficients really do exist. As shown in Shapelets I §3.4, uncorrelated

and unbiased pixel noise becomes white noise in shapelet space, evenly spread between

the coefficients, so it is indeed feasible to try to extract signal from them all. For example,

after combining information from higher-order coefficients, our approach can not give

a worse shear measurement than KSB, although it can be better: particularly for higher

S/N objects. Image reconstruction with our method is also demonstrably better than

other techniques. Our least-squares fitting of shapelet basis functions is therefore more

than a simple recovery of old ideas. Rather than maximising the density of information

ad hoc, we instead seek to maximise the total quantity of information.

An example of χ2 contours in the β vs nmax plane, is shown in figure 4.8. The hori-

zontal trough is typical for all galaxies, although with varying levels of noise. There is an

optimum β for image reconstruction, decreasing slightly as more coefficients are added,

but roughly independent of nmax. The reconstruction improves to arbitrary precision

as nmax → ∞. However, not all of these coefficients are significant, and computation

speed (as well as data compression) is increased dramatically with truncation in nmax.

A decomposition with χ2r = 1 is sufficient to model the object while smoothing over and

removing any observational noise. We therefore search {x0, β,nmax} space with goals of:

dχ2

dβ
= 0 , (4.79)

~xc = 0 , (4.80)

and

χ2r = 1 or flattens out
dχ2r

dnmax
< σ

(
χ2r
)
≃
√

2

npixels
(4.81)

These determine the centre and size of the basis functions which achieve a suitable im-

age reconstruction using as few parameters as possible. The first constraint ensures that

the scale β is well-matched to the image, and that nmax can be small. The second con-

straint gets the centre of the basis functions correctly on the centre of the image, where

~xc is defined as a sum of shapelet coefficients in equations (4.46) and (4.47). The third

constraint guarantees that sufficient coefficients are included, but not too many. Equa-
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Figure 4.8: χ2 contours on a β vs nmax plane for an elliptical galaxy in the HDF with medium
S/N. The roughly horizontal trough is very typical. The arrows show individual steps (each
containing several sub-steps) made by our optimization algorithm. Also shown are geometrical
θmin, θmax constraints and the target χ2r = 1 contour.

tion (4.81) also includes a flatness condition, which is particularly important for galaxies

with a near neighbour or for some noisy objects. In these cases, adding extra shapelet

coefficients may not significantly improve a fit; so the series is truncated early.

4.5.6 A practical implementation

The simultaneous implementation of these three constraints is numerically non-trivial

because it requires both minimisation (in the β direction) and root finding (in the nmax

direction), in a space with one axis inherently discrete. This section describes code that

we have devised to do this. Its stepwise approach iterates towards the optimal solution,

and is demostrated in figures 4.8 and 4.9.

SEXTRACTOR outputs (Bertin & Arnouts 1996) are used to make an initial guess at

the centre ~x0 and size β to be used for the shapelet decomposition. The process is stable

with respect to these choices, within reasonable limits. We initially set nmax=2 to perform
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Figure 4.9: Shapelet decomposition of object in figure 4.8. Images are shown corresponding to
the shapelet decomposition at all the vertices along the path taken by our algorithm.

a quick first iteration.

Firstly, β is quickly varied at nmax = 2 to minimise χ2 using a 1D version of the

Numerical Recipes AMOEBA routine: vertically in figure 4.8. During each step of the

iteration, the centroid is simultaneously shifted to re-zero series (4.46) and (4.47) in the

shapelet coefficients. Since the calculation of the centroid is independent of β for isolated

objects (see §4.3.5), this part of the interation is both very stable and very fast. Figure

4.8 also shows the additional geometrical constraints of θmin > 0.2 pixel and θmax not

falling off the edge of the postage stamp. These act as hard boundaries to the region of

parameter space which the iteration is allowed to explore.

Secondly, nmax is increased until criterion (4.81) is satisfied: horizontally in figure

4.8. This is done in steps of two and then fine-tuned at the end. Of course, if two

values of nmax fall within the allowed limits, the lower value is taken. After this, if the

object warranted more coefficients than the initial guess of nmax = 2, β and ~x0 are again

readjusted at the new nmax. The process then repeats another nmax search, starting back

at nmax = 2 and increasing again in steps of two. The algorithm terminates when either

of these processes return to the same value as they started, with all three criteria (4.79)

to (4.81) being met. On trial data, the algorithm has a ∼86% convergence rate, with

many of the remainder being either close galaxy pairs or false-positive SEXTRACTOR

‘detections’ of noisy garbage. These objects are flagged and excluded — with a selection

function roughly independent of magnitude. Depending upon the complexity of the

galaxy involved, our algorithm takes up to ∼ 1s on a 1Ghz PC.
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Figure 4.10: Shapelet modelling of a selection of HDF I-band galaxies. Higher S/N galaxies
typically require more shapelet coefficients so we display a variety of source galaxies, noting the
shapelet nmax required to reach a reconstruction with χ2r = 1. In all cases, the first column shows
the original HDF image; the middle column shows the shapelet model; the right column shows
the residual. The image size and colour scale is different for each row.
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4.5.7 Performance

We have described an algorithm to first detect objects within an image using SEXTRAC-

TOR, then to optimise the shapelet parameters β, nmax and ~xc for reconstructing each

object. The algorithm produces a final catalogue of shapelet decompositions for ∼ 500
objects per square arcminute in the HDFs. This is 81% of the ‘objects’ initially detected

by SEXTRACTOR. The iteration fails to converge to χ2r ≤ 1 for 42 close galaxy pairs (iden-

tified from a segmentation map), 36 objects because of their proximity to bright stars or

to the edge of the image, and 60 more objects across the HDFs. These are mainly false de-

tections of noise due to the low initial S/N detection threshold set for SEXTRACTOR (see

section §4.4.2). Note that the number of decompositions which fail as close galaxy pairs

is roughly independent of magnitude. In fact, the slope of the number counts for galaxy

pair members is within 1σ of that for all the galaxies in the HDF. This is important, in

order to avoid problems in the next chapter.

Figure 4.1 displays a selection of bright HDF galaxies successfully modelled using

shapelets, and figure 4.10 displays another selection at various levels of S/N. Achieving

a faithful reconstruction of the images, allowing for the local background noise level,

requires an nmax of only 2, 3 or 4 for faint galaxies. Brighter or larger objects, which con-

tain more detail, require an increasing number of shapelet coefficients; although nothing

more than nmax = 20 is required for all HDF objects. The right-hand column of figure 4.10

shows the reconstruction residuals, which are consistent with noise even for irregular

galaxy morphologies.

The smooth, analytic shapelet models can be easily transformed in shapelet space, to

implement many common astronomical tasks. Rotations, enlargments and translations

can all be performed with simple combinations of quantum mechanical â† and â ladder

operators acting upon coefficient vectors |n,m〉. PSF convolution and deconvolution is

also possible via an analytic bra-ket matrix multiplication.

Linear combinations of shapelet coefficients can be formed to describe the size, bright-

ness and morphology indices of an object. The reliability of these shapelet-based estima-

tors is shown by a comparison with the equivalent SEXTRACTOR measurements of HDF

galaxies in figure 4.11. In performing the shapelet decomposition of all these HDF galax-

ies, we have incidentally created a complete morphological catalogue of galaxy shapes

at this depth. This catalogue will be of great use in the next chapter.
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Figure 4.11: Recovery of objects from the HDF as shapelet parameters. Statistics are shown of the
shapelet decomposition algorithm without PSF deconvolution, and various comparisons made
with SEXTRACTOR measurements of the same objects. Points in the bottom-right plot have at
random been slightly offset for clarity.



5
Simulations of astronomical images

5.1 The need for simulated observations

As astronomical surveys are growing in size and scope, so image analysis methods are

increasing in complexity and accuracy. In order to calibrate these new methods, it is es-

sential to have a large sample of images containing objects whose properties are some-

how already known. Since all real data is subject to the uncertainties of observational

noise, telescope aberration and seeing, several software packages have been developed

to manufacture artificial images (e.g. SKYMAKER (see Erben et al. 2001) or ARTDATA in

IRAF (Tody 1993)). The accuracy of image analysis methods can then be assessed by

comparing their output to the known input image properties that were specified before

the addition of such observational effects.

The image simulation packages currently available are particularly valuable for im-

itating deep ground-based data. However, they limit themselves to a representation of

galaxies as parametric forms such as symmetric de Vaucouleurs or exponential profiles.

Deep space-based images, on the other hand, contain many irregular or asymmetrical

galaxies with complex resolved features such as spiral arms, mergers and dust lanes.

One possibility for simulating space images, utilised by Bouwens, Broadhurst & Silk

(1998), is to repeatedly reuse well-resolved galaxies from the Hubble Deep Fields (HDFs;

Williams et al. 1996, 1998). However, this restricts us to morphology templates from a

relatively bright and nearby sample. Fainter galaxies cannot be used because they have

been significantly contaminated with background noise. Consequently, the morphologi-

cal properties of the faint galaxy population are not fairly represented. This method also

111
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faces the difficulty that the same real galaxies must be reused many times within one

simulation. Although the HDFs are indeed very deep (IF814W=27.60 at 10σ, Williams et

al. 1996), they only cover a small area (∼6 square arcminutes each) and contain a finite

number of galaxies. Even if we were to source our real galaxies from larger surveys such

as the Groth strip (Groth et al. 1994) or the Medium Deep Survey (Ratnatunga, Griffiths

& Ostrander 1999), we would still face the difficulty of using particular real galaxies

many times in a large simulation.

In this chapter, we present a method for simulating deep images that contain gen-

uinely unique objects, yet replicate the morphological distribution of galaxies in the HDF

at all depths. This method has the advantage of allowing us to simulate arbitrarily large,

deep surveys with no repetition of galaxy shapes. It also allows us to know accurately

the intrinsic properties of each galaxy, before adding telescope-specific noise properties,

systematic effects and convolution with a Point-Spread Function (PSF).

Our method is to first decompose all objects in the HDFs into shapelet parameteriza-

tions. Using just a few coefficients, these can completely quantify the shape properties

of all galaxies, including spiral arms, bars and arbitrary radial profiles. We then model

their distribution of shapelet coefficients, and draw from this probability distribution

new sets of shapelet coefficients, representing new galaxies. In particular, we take into

account the covariance between shapelet coefficients so that, for example, shapes de-

pend upon magnitude and size (e.g. faint galaxies appear more irregular than bright

ones). In this method, we therefore do not input any model of physical morphology or

evolution. Rather, we exclusively use the measured statistics of the shapelet coefficient

distributions from a real galaxy sample, as a function of magnitude and size. The new

galaxy images can then be analytically convolved with any PSF, pixellated, and given an

appropriate amount of noise for any exposure time down to the depth of the HDF.

These simulations have several significant applications. We can use them to cali-

brate the effectiveness of image analysis and detection methods such as SEXTRACTOR

(Bertin & Arnouts 1996), IMCAT (Kaiser, Squire & Broadhurst 1995), GIM2D (Simard

1998), GALFIT (Peng et al. 2002) and wavelet routines (e.g. Meyer 1993). By examining

the errors on shape measurement at various signal-to-noise levels of galaxy detection,

we can also predict the precision of future experiments requiring accurate shape mea-

surement. In chapter 6, this technique will be applied to a proposed cosmic shear survey

from space.

5.2 Image simulation with shapelets

5.2.1 Generation of a source catalogue and treatment of the P SF

The first step in our method is to detect and model HDF galaxies as shapelets, through

the procedure described in chapter 4.
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The algorithm creates a catalogue of optimised shapelet decompositions for ∼ 500
objects per square arcminute in the HDFs. However, this represents only 81% of the

‘objects’ initially detected by SEXTRACTOR. Approximately two dozen of the brightest

galaxies require a decomposition with nmax > 15. To simplify later analysis, these are

prematurely truncated at this point, with ~x0 and β chosen to give the best possible, if

slightly imperfect, shapelet fit. The iteration also fails to converge to χ2r ≤ 1 for a fur-

ther 42 close galaxy pairs (identified by the SEXTRACTOR segmentation map); 36 objects

because of their proximity to bright stars or the edge of the image; and 60 more objects

across the HDFs, which are mainly false detections of noise due to the low S/N detection

threshold set for SEXTRACTOR (see section §4.4.2). Note that the number of decompo-

sitions which fail as close galaxy pairs is roughly independent of magnitude. Indeed,

the slope of the number counts for galaxy pair members is within 1σ of that for all the

galaxies in the HDF.

We shall later require a parametrized catalogue of real galaxy morphologies. Dur-

ing the modelling of the HDF galaxy shapes, we must in general account for the PSF of

the WFPC2 camera which has smeared the images. Since our objective here is to sim-

ulate only HST images, we do not correct for the PSF. It is naturally contained within

the shapelet models of the galaxy images and intentionally left unaltered. Our simu-

lated images will end up being automatically smeared by the WFPC2 PSF, effectively

circularised because of the random reorientation of new galaxies.

For other applications, including the simulations described in chapter 6, it may be de-

sirable to simulate observations from other telescopes such as the JWST (http://www.

stsci.edu/ngst/), SNAP (http://snap.lbl.gov/) or GAIA (http://astro.

esa.int/gaia/). It would then be necessary to take account of their different instru-

mental properties. The ideal way to do this would be to deconvolve HDF galaxies from

the WFPC2 PSF analytically in shapelet space (see Shapelets II §3), and then to recon-

volve simulated galaxies with a new PSF at the end. Unfortunately, we have found

this method difficult to implement in practice. The process of deconvolution naturally

pushes information into high-n andm shapelet coefficients, as shown in Shapelets I fig-

ure 8. Although the ensuing galaxy reconstructions are still realistic, information about

the overall galaxy morphology distribution is spread thinly over an increased number

of coefficients. This distribution is no longer sufficiently well sampled by galaxies in the

HDFs for the smoothing-and-resampling method presented in §5.2 to be effective.

An alternative solution exists to simulate images with a PSF of the same size or larger

than that of HST. The WFPC2 PSF can be conveniently maintained throughout the sim-

ulations, and the images convolved again at the end with a second, ‘difference’ kernel.

This kernel is intended to make up the difference between the original PSF of WFPC2

and that of the new instrument. It can be obtained by deconvolving the WFPC2 PSF

from the new PSF, an operation performed easily in shapelet space (see Shapelets II §3).

This is the technique that will be used in chapter 6.
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5.2.2 A Tuning Fork in multi-dimensional shapelet space

A sample of galaxy morphologies can be thought of as a distribution of points in a multi-

dimensional shape parameter space. This is illustrated by the cartoon in figure 5.1. The

axes in this space might represent size, magnitude, position angle (P.A.) and so on. Each

point corresponds to a particular galaxy with a specific morphology, and various cor-

relations may emerge between variables. For example, the classic Hubble tuning-fork

diagram (Hubble 1926, Sandage 1961, de Vaucouleurs 1959) relates the object ellipticity,

the bulge/disc ratio, and the extent to which the spiral arms are unwound. GIM2D

(Simard 1998) and GALFIT (Peng 2002) software use axes parametrized by the relative

amounts of exponential or de Vaucouleurs/Sérsic functions (de Vaucouleurs 1959, Sérsic

1968) required to fit the galaxy’s radial profile.

Figure 5.1: Idealised representation of a slice through shapelet morphology parameter space,
where each dimension corresponds to a shapelet coefficient. The points represent the position of
an observed HDF galaxy in shapelet space. Their distribution encode the underlying morphol-
ogy distribution of real galaxies, like a multi-dimensional Hubble sequence. This morphology
distribution can be smoothed and resampled to generate an unlimited number of unique, yet
realistic galaxy shapes for the image simulations.

In this thesis, we shall instead choose the axes of our galaxy morphology distribu-

tion to be the magnitudes and phases of the (complex) polar shapelet coefficients. We

shall first describe the properties of this “shapelet parameter space”. In section §5.2.3,

we shall then argue that the underlying Probability Density Function (PDF) of galaxy

morphology is relatively simple in this parameter space, and may be recovered from a

finite sample of galaxies like those in the HDFs.

Projections of the shapelet parameter space onto various coefficient axes are shown

in figure 5.2. Each point in the top-left panel represents a data vector encoding the shape
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information about one HDF galaxy. Collectively, they describe the overall morphology

distribution of distant galaxies. This distribution is shown, smoothed, in the top-right

panel; the remaining panels show other projections. Notice that there are correlations

evident in the parameters, which correspond to the construction of the familiar shapes

of galaxies. In the bottom-right plot, for example, deviations from the diagonal show

twisting isophotes that can grow, with higher order basis functions, into spiral arms. It

is also important to notice that some regions of parameter space are empty. A random

set of shapelet coefficients will not produce a realistic galaxy shape: there is not even a

positive definite constraint imposed upon an image in the shapelet formalism.

Galaxies are all pre-rotated so that their a22 coefficient is aligned with the horizon-

tal. They are also flipped, if necessary, so that the sign of the a42 phase is positive. This

ensures that the outer isophotes of all objects twist in the same, anti-clockwise sense.

Correlations between other shapelet coefficients are maintained in order to preserve the

morphology of the galaxy. This process considerably compresses parameter space, with-

out loss of information. Any two well-sampled objects, which are identical apart from

their orientation or handedness, will now decompose into identical shapelet coefficients.

This increases the sampling density of parameter space, allowing it to be better popu-

lated wuth only a finite number of source galaxies. When new, simulated galaxies are

created, they will be randomly rerotated and half of them will be flipped back.

Two other axes are required for our parameter space, since real galaxy morpholo-

gies clearly vary as a function of size and magnitude (see e.g. figure 5.5). Storing the

shapelet scale factor β separately allows large HDF galaxies to occupy different regions

of parameter space to small ones. Similarly, using magnitude as another parameter al-

lows galaxies of different luminosities to have different types of shape. The middle-left

plot of figure 5.2 demonstrates that fainter galaxies can be more irregular, with a higher

ellipticity dispersion. Since shapelet coefficients (including a00) scale as the flux, once

we include magnitude as an independent parameter, we can divide all anm coefficients

by a00. This removes explicit magnitude dependence from these quantities and coinci-

dentally ensures a convenient version of adaptive smoothing at a later stage (see §5.2.4).

The degenerate parameter a00 = 1 is now removed, and size and magnitude are treated

in the same way as any other axis of the parameter space from now on.

Note that any orthogonal transformation of the shapelet basis functions would main-

tain their useful properties of completeness, orthogonality and Fourier transform invari-

ance. For instance, Cartesian shapelets could be used instead. However, these would not

permit the convenient factoring out of the object’s orientation and handedness. Using

Principal Components Analysis (PCA), it is possible to determine the set of axes that

most compactly describe our galaxy population. However, both elliptical and spiral

galaxy shapes are already quite simple to manufacture with only a few polar shapelet

coefficients; we therefore avoid the extra complication of PCA in this thesis.
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Figure 5.2: Phase space correlations and smoothing in the shapelet parameter space. The top
left panel displays the position of measured HDF galaxies along two axes of shapelet space;
the top right panel shows the probability distribution produced by smoothing this distribution.
The other left panels display further projections of the PDF onto shapelet coefficient, size and
magnitude axes, while the remaining right panels display phase correlations between shapelet
coefficients. The colour scale is logarithmic in the bottom left panel.
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5.2.3 Recovery of the smooth underlying PDF of galaxy morpho logies

The top-left panel of figure 5.2 shows a slice through the parameter space of galaxy mor-

phologies, populated by δ-functions representing real, observed shapes. Unlike a dis-

tribution parametrized simply by bulge/disc ratios and disc inclination angles, it is not

obvious a priori that an underlying, smooth PDF should exist for galaxy morphologies

in shapelet space. However, the compact shapelet representation of astronomical objects

suggests that this ought to be the case, and we shall attempt to recover it by smoothing

this parameter space.

Once the validity of the smoothed PDF has been established, it will be a simple mat-

ter to resample it and thus to synthesise a population of galaxies. Monte Carlo tech-

niques can be used to generate unlimited numbers of realistic galaxies in this fashion, to

fill any amount of sky area in a simulated imaging survey.

The remaining panels of figure 5.2 demonstrate that the parameter space is indeed

smooth in those places where it is well sampled. We assume that some other regions

are equally smooth, but poorly sampled because of the finite number of galaxies in the

HDF. We note that voids are also expected in the parameter space, where the shapelet

expansions do not correspond to realistic galaxy shapes. We shall therefore be careful

not to smooth the PDF with large smoothing lengths which would significantly encroach

upon these voids. However, limited perturbations around HDF galaxies may indeed

recover realistic morphologies.

Without an explicitly physical model of galaxy morphology and evolution built in

to shapelets, it is the final results that must provide the ultimate verification of our sta-

tistical method. In §5.2.4, we show that it is indeed possible to find a smoothing length

for the PDF that recovers objects which appear to represent realistic shapes. In §5.3 we

demonstrate quantitatively that their global properties are realistic, by comparing real

and simulated populations of galaxies via morphology diagnostics commonly used on

deep images.

5.2.4 Multivariate kernel smoothing method

Many practical approaches have been devised to smooth discrete samplings of a mul-

tivariate PDF. Our main constraint in selecting one of these methods is the very high

dimensionality of our data set. The median nmax required for objects in the HDF is 4.

However, even with the efficient data compression that shapelets can afford, models

of the highest S/N galaxies use values for nmax as high as 15. Adding object size and

magnitude, this corresponds to 137 total coefficients, and this is therefore the maximum

number of dimensions required.

To smooth and resample this dataset, we have chosen the Kernel smoothing method

which is eloquently reviewed by Silverman (1986). Kernel smoothing can be considered

as an alternative to using histograms. It avoids the ambiguity of binning and instead
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Figure 5.3: The effect of perturbing galaxy morphologies in shapelet space. Each image in the
top row shows a real HDF galaxy, rotated by random angles. Its shapelet coefficients are incre-
mentally perturbed in successive rows, although its overall flux is kept constant for the purpose
of this plot. A degree of perturbation corresponding to our choice of the smoothing length λi
is shown inside the box: these images represent typical simulated galaxies. Perturbations larger
than λi produce objects which contain significantly negative pixel values. The left panel depicts
a spiral galaxy; the right panel a more typical irregular form. The colour scale is logarithmic.

yields a smooth analytic curve. For one-dimensional data, each sample data point is

replaced by a smooth Gaussian kernel. To create a PDF, all the kernels can be summed

and then normalised to integrate to unity. The width of these smoothing Gaussians still

remains to be decided, but methods exist for optimising this factor. Each kernel can even

be given a different width, calculated as a function of a quick local density estimate, in

order to produce adaptive smoothing.

In data with more than one dimension, each sample point is replaced by a multivari-

ate kernel. To help overcome the difficulties associated with the leaking of probability

density into the wings of many-dimensional kernels, we replace the Gaussian with a

more compact Epanechnikov kernel (Epanechnikov 1969),

K(δxi) =





3
4λi

(
1−

(
δxi
λi

)2)
for − λi < δxi < λi

0 elsewhere ,
(5.1)
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where we have reformatted the shapelet coefficients of each HDF galaxy into a data

vector xi, and δxi are deviations in shapelet space from these real data points. In each

case, i is a coefficient index running from 1 to 137. λi are smoothing widths which will

be determined for each direction of our PDF space in §5.2.5. Isodensity contours of this

kernel are multivariate ellipses whose axes are aligned with those of the co-ordinate axes

(see figure 5.2). In general, they could be allowed to point in any direction (Sain 1999),

but we do not find this to be necessary.

We implement an adaptive smoothing of our PDF by reparametrizing anm as anma00 .

Given a constant λi, this creates an effective smoothing kernel for each object of widths

λ′i = a00λi. This functional form is useful because the brighter HDF objects are less fre-

quent, and are therefore more isolated in probability space. Since a00 roughly correlates

to total flux, we obtain a larger smoothing radius for brighter objects and better recover

the underlying probability distribution. We shall prove that this recipe does produce

realistic morphologies in §5.3.

5.2.5 Generation of a simulated galaxy catalogue

Having recovered a realistic and analytic PDF of galaxy morphologies, we now wish

to resample this distribution to generate brand new galaxy populations. The main ad-

vantage of the kernel smoothing approach now becomes apparent. Without resorting to

costly numerical integration, Silverman (1986) §6.4.1 presents a quick bootstrap method

to generate a Monte-Carlo sample from a PDF constructed with δ-functions smoothed

by kernels K(δx). We take the following steps to simultaneously smooth and resample

the parameter space of HDF galaxies

Step 1 : Randomly select one of the original HDF

galaxies, uniformly and with replacement.

Step 2 : Generate a small perturbation δxi from

the probability density function K(δxi).

Step 3 : Add δxi to the shapelet coefficients xi of

the HDF galaxy. This simulates a new

galaxy, sampled from the overall PDF.





(5.2)

This approach is arrived at by simply regarding the PDF as a sum of small kernels rather

than one overall function. Individually, these kernels are quick to compute; and the di-

mensionality of the PDF can even be lowered for faint objects that require fewer coeffi-

cients. The perturbations can be quickly sampled from an Epanechnikov kernel K(δx)

by generating three random numbers from a uniform probability distribution between

−λi and λi. If the first does not have the highest absolute value, take it and discard the

rest; otherwise take the second. Iterating this procedure to generate sufficient objects for
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Figure 5.4: Sample HDF-depth simulated I-band image, 30′′×30′′.

a simulated Hubble Deep Field requires only a few minutes on a 1GHz PC.

We must now decide how to choose the overall smoothing length λi. If λi ≡ 0, the

kernel is a δ-function and the original HDF objects are recovered exactly. This arrange-

ment will create simulations of limited practical use, but in §5.3 they act as an intermedi-

ate test of the shapelet decomposition. As λi →∞, the coefficients for simulated galax-

ies become completely random and the objects become unrealistic. In this limit, since no

positive-definite constraint is ever imposed in the shapelets formalism, we find that sim-

ulated objects exhibit undesirable holes of negative flux. Figure 5.3 shows realisations

of how a typical galaxy from the HDF is altered by increasingly large perturbations to

its shapelet coefficients, showing negative flux for large λi perturbations.

We therefore require a choice of λi which is sufficiently large to produce new galax-

ies, yet sufficiently small to maintain realistic morphological properties. By measuring

the minimum pixel values of many different galaxy realisations, we find suitable results

if λphase <∼ 15◦ and λmoduli <∼ 4×[mean separation between nearest neighbours in that di-

mension]; beyond these values, negative holes rapidly appear. For the purposes of this
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paper, we therefore fix λi to these limiting values. This still represents relatively weak

smoothing, but the variety and realism of generated morphologies is pleasantly surpris-

ing: polar shapelets are indeed sufficiently close to the Principal Components of galaxy

morphology that small perturbations in shapelet space correspond to reasonable and re-

alistic changes within galaxy types. A quantitative demonstration of these remarkable

results is presented in §5.3.

5.2.6 Generation of images

A Monte Carlo population of genuinely new yet realistic objects has been extracted from

the PDF of galaxy morphology. These galaxies are now allocated random orientations

and locations on the sky, at a density of 700 per arcmin2. This constant has been cali-

brated to recover the same total number counts, after the addition of noise, as are mea-

sured in the HDFs (see §5.3.1). No attempt is made here to correctly model the 2-point

correlation function of galaxy positions, or to include galaxy mergers beyond those suf-

ficiently advanced to appear as one object in the input SEXTRACTOR catalogue.

The correct slope in the size and magnitude distributions are automatically ensured

over a wide range of validity, since size and magnitude are intrinsic variables of the

PDF (see the bottom-left panel of figure 5.2). However, it is important to consider

the question of completeness in our simulations for very faint galaxies. A discrepancy

could arise through either non-detections of faint HDF galaxies by SEXTRACTOR or non-

convergence of their shapelet decompositions. The first effect is minimised by our choice

of SEXTRACTOR parameters (see §4.4.2) and the second is shown in §4.5.6 to be under

control. However, the number counts of galaxies at the very faint end (I >∼ 29) are also

highly sensitive to the the precise background noise properties (see §5.2.7). For this rea-

son, we choose not to consider galaxies fainter than I = 29.

At the bright end, we also expect the simulations to be incomplete, since the HDFs

were intentionally chosen by STScI as areas containing few large, bright galaxies. In the

future, we shall extend our simulations in this respect by incorporating “Groth survey

strip” (Groth et al. 1994) and ACS galaxies into the object source catalogue. One could

also compensate for any known incompleteness by preferentially selecting for under-

represented galaxy types in step 1 of procedure (5.2).

5.2.7 Modelling telescope and observational effects

The shapelet models of galaxy images are actually analytic functions. These can quickly

be convolved with a PSF that has also been decomposed into shapelets, using the matrix

operation in Shapelets II §3.1. Stars can also be included in an image, given a magnitude

distribution, by repeatedly placing the shapelet model of the PSF in an image at the ap-

propriate flux amplitude. All of these analytic objects are then integrated within square

pixels of the same 0.0398′′resolution as the DRIZZLEd Hubble Deep Field. Our images
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Figure 5.5: Section of the real HDF, with the same size and scale as figure 5.4.

have a somewhat larger solid angle than the HDFs because the missing quarter from the

WFPC ‘L’ is restored.

Observational noise can now be added, at a level appropriate to the desired exposure

time. We have simply added photon counting noise (proportional to the square root of

the raw pixel values), and Gaussian background noise (with an amplitude determined

from the HDF itself). However, it would be easy to add a background level, cosmic rays

and even instrumental distortions: the shearing for which could be performed conve-

niently in shapelet space before pixellisation. A further effect, not included in our simple

model, is noise that is correlated between adjacent pixels. Aliasing occurs as a side-effect

of the DRIZZLE algorithm, which recovers image resolution by stacking several dithered

exposures. This aliasing can make it possible to detect slightly fainter objects and also

introduces some spurious objects at very low S/N. The steep slope of the real number

counts beyond I = 29 exacerbates this problem, and we would not yet trust the noise

model on our simulations for galaxies any fainter than this.

Final output is as a FITS image, a sample of which is displayed in figure 5.4. Larger
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Simulated Images with Shapelets
Flow chart:
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Figure 5.6: Flowchart showing the steps taken to produce a simulated image. These steps mimic
the processes acting on photons en route from a distant galaxy to a telescope. The required
inputs from cosmology, an engineering model of the telescope and a survey strategy are shown
in a script font. Black ink shows steps that are already implemented. Blue ink shows steps that
are not currently in use, but which could easily be added. Red ink shows steps that would be
more difficult to include. For example, type Ia supernovæ could be superimposed upon the
images, to simulate the second goal of the SNAP mission.
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images may be downloaded via anonymous ftp from the shapelets web page at http:

//www.ast.cam.ac.uk/$\sim$rjm/shapelets. Notice the wide range of galaxy

morphologies and behaviours present in figure 5.4. In particular, features resembling

spiral arms, dust lanes and resolved knots of star formation are present, together with

various radial profile shapes. By eye, the simulated galaxies look very similar to those

in a similarly-scaled section of the HDF itself, reproduced in figure 5.5. An overview

of our method is shown by the flowchart in figure 5.6. We shall quantitatively examine

whether our simulation effectively mimics the morphology distribution of HDF galaxies

in the following section.

5.3 Statistical tests of simulated images

We now demonstrate quantitatively that our simulated images are realistic, in the sense

that commonly used morphology measures for our galaxies match the distributions of

those for galaxies in the HDFs. First, we consider the number counts and size distri-

butions, using photometry and size measures from SEXTRACTOR (Bertin & Arnouts

1996).These ought to be roughly consistent by construction, because they are closely

related to two of the axes in our parameter space. Then we compare more detailed mor-

phology measures, such as concentration (Bershady et al. 2000), asymmetry (Conselice

et al. 2000a), clumpiness (Conselice et al. in preparation) and ellipticity. These are not

automatically expected to match, because our shapelet-based PDF does not directly rep-

resent these quantities. Thus, a comparison between these properties for simulated and

real data provides a rigorous and fair test of how realistic our simulations are.

5.3.1 Size and magnitude distributions

In order to carry out these tests, we first apply the SEXTRACTOR object-finding and shape

measurement package on the version 2 reductions of the HDF-N and HDF-S (Williams

et al. 1996, 1998), together with a 6 arcmin2 simulated image of the same depth. As an in-

termediate test, we also analyse a simulated image containing shapelet reconstructions

of galaxies drawn from a PDF left as δ-functions. These should be identical to the ob-

jects in the HDF and act as a test of the shapelets modelling procedure rather than the

perturbations in shapelet space. In all four cases, approximately 320 galaxies brighter

than I ≤ 29 were detected per arcmin2. For the galaxies only, we extracted observed

magnitudes (MAG BEST) and sizes (FWHM IMAGE).

Figure 5.7 compares the size vs magnitude distributions of the simulated images with

those of the two HDFs, excluding the stars. Figure 5.8 then shows the galaxy number

counts for real and simulated cases in more detail. These match well over six or more

orders of magnitude, whether the simulations used a δ-function PDF or the full version.

Note, however, that the noise in the simulated images is not aliased in the same way
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Figure 5.7: Size vs magnitude plane for 6 arcmin2 I-band images to HDF depth, measured with
SEXTRACTOR. Top-left panel: for a simulated image containing shapelet reconstructions of HDF
galaxies (the PDF kept as δ-functions). Top-right panel: for a simulated image with galaxies
perturbed in shapelet space. Bottom panels: for real galaxies in the Hubble Deep Fields North
and South, calculated using the same SEXTRACTOR input parameters as reference. The stellar
locus is omitted from all panels.

as the DRIZZLE algorithm has caused the real data to become (see §5.2.7). The num-

ber counts beyond I ∼ 29 are highly sensitive to background noise properties, and are

indeed increased in the simulated image if we artificially smooth the noise. Clearly

DRIZZLE is something that needs further attention in a future implementation.

For the present purposes, we apply magnitude cuts and compare only the brighter

objects, which are unaffected by such minor changes. These cuts are at levels determined

by the stability of an individual diagnostic to noise. Figure 5.9 compares the size distri-

bution of the simulated objects brighter than I = 29 with those of the HDF galaxies, as

found by SEXTRACTOR. We find that there is excellent agreement in the shape of this

distribution: the median and standard deviation FWHM for real galaxies in the HDFs

are 0.30′′and 0.24′′. For simulated objects, these figures are 0.31′′and 0.23′′. This agree-
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Figure 5.8: Number counts in simulated I-band images (solid red), normalised by area on the
sky. Also shown are number counts for the Hubble Deep Field North (dot-dashed) and South
(dashed).

ment comes about partly (but not entirely) by construction. It was somewhat expected

that our simulated images will closely match real data in terms of their magnitude and

size distributions, but the final high precision is encouraging.

5.3.2 Galaxy morphology diagnostics

We can more stringently test the reliability of our algorithm to reproduce properties of

real galaxies by measuring morphological parameters which are entirely independent of

shapelets. We apply a series of commonly used morphology diagnostics to two differ-

ent realisations of the simulated images. A first version, containing unaltered shapelet

models of HDF galaxies, tests the shapelet modelling process in isolation. A second sim-

ulated image, with galaxies drawn from the fully smoothed morphology PDF tests the

fairness of these perturbations in shapelet space.

A first basic analysis is to determine the gross shape of galaxies, i.e. their elliptic-

ities. The ellipticity of all the galaxies was obtained from SEXTRACTOR. Following a
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Figure 5.9: Size distribution of objects in a 6 arcmin2 simulated image with limiting magnitude
I = 29 (solid red). Also shown are size distributions for the Hubble Deep Field North (dot-
dashed) and South (dashed).

convention in weak lensing literature, we here define two independent components of

ellipticity as

e1 ≡
A IMAGE2 − B IMAGE2

A IMAGE2 + B IMAGE2
cos(2× THETA IMAGE) (5.3)

e2 ≡
A IMAGE2 − B IMAGE2

A IMAGE2 + B IMAGE2
sin(2× THETA IMAGE) (5.4)

where A IMAGE and B IMAGE are the lengths of the major and minor axes of the el-

lipse, and THETA IMAGE is the angle between the major axis and the horizontal (all

parameters supplied by SEXTRACTOR). Figure 5.10 compares this ellipticity distribution

of the real and fully simulated objects brighter than I = 29. Again, these are in excel-

lent agreement: with standard deviations in e =
√
e21 + e

2
2 of 0.64 for real data, 0.62 for

simulated data using a δ-function PDF and 0.62 for simulated data using the full PDF.

The four images have also been passed through the model-independent morphol-
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Figure 5.10: Ellipticity distribution, as defined in equations (5.3) and (5.4), of objects in 6 arcmin2

simulated image with limiting magnitude I = 29 (solid line). Also shown is the ellipticity distri-
bution for the Hubble Deep Fields North (dot-dashed) & South (dashed), and a Gaussian with
the same mean and rms (dotted).

ogy software developed by Conselice et al. (2002a), Bershady et al. (2000) and Conselice

(2003), in order to measure the concentrations (C), asymmetries (A) and clumpiness (S)

values of the real and simulated galaxies. We first describe how these three quantities

are calculated, and then compare the distributions obtained for these measures from

real data and simulations. These ‘CAS’ parameters are very informative, as all nearby

galaxy types (ellipticals, spirals, dwarfs, etc.) fall in distinct regions of CAS space (Con-

selice 2003). These parameters thus capture most of the variation in galaxy structures

and have frequently been used for quantitative morphology classification.

The concentration index, C , is defined in terms of the ratio of the radii containing

80% (r80) and 20% (r20) of the object’s total flux:

C ≡ 5× log
(
r80
r20

)
. (5.5)

For the total flux, we use the flux within an aperture 1.5 times the size of the Petrosian
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Figure 5.11: Concentration vs asymmetry, as defined in equations (5.5) and (5.6), for 6 arcmin2

images with limiting magnitude I = 26. Top-left panel: for a simulated I-band image containing
shapelet reconstructions of HDF galaxies (the PDF kept as δ-functions). Top-right panel: for a
simulated image with galaxies perturbed in shapelet space. Bottom panels: for real galaxies in
the Hubble Deep Fields North and South.

radius at η = 0.2 (Bershady et al. 2000). The η parameter is defined as the ratio of the

surface brightness at a radius divided by the surface brightness integrated within the

radius, such that at the centre of a galaxy, η = 1 and at the very edge of a galaxy (where

its surface brightness is 0), η = 0.

Typical values of C for real galaxies range from approximately 2 to 6. Galaxies with

C > 4 are usually ellipticals or spheroidal systems: a galaxy with an r1/4 profile has

C = 5.2. A purely exponential disc galaxy hasC =2.7 (Bershady et al. 2000). Objects with

lower light concentrations are shown by Graham et al. (2001) to be systems with low cen-

tral surface brightnesses and often low internal velocity dispersions. Low concentration

values are also found for dwarf galaxies (e.g. Conselice et al. 2002). The concentration

index thus correlates, within some scatter, with the total mass of a galaxy.

The asymmetry index used in this paper (called A180 in Conselice et al.2000a,b) is
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Figure 5.12: Concentration vs Petrosian radius, as defined in equation (5.5) and the text, for 6
arcmin2 square images with limiting magnitude I = 26. Panels are ordered as in Figure 5.11.

calculated by rotating an image by 180◦ and subtracting the it from the original. Then

we evaluate

A ≡min
[∑ |Ix,y − I180x,y |∑

|Ix,y|

]
−min

[∑ |Bx,y −B180x,y |∑
|Ix,y|

]
, (5.6)

where Ix,y is the galaxy surface brightness in the (x, y) pixel of the image, Bx,y the sky

background in the same pixel, and superscripts denote rotations. Sums are over all

pixels within the same η = 0.2 Petrosian radius from which the total light measurement

is made. Minimisation is then over different choices of the centre of rotation ~xc (see

Conselice et al. 2000a).

The asymmetry index is sensitive to any physical processes in a galaxy that produce

asymmetries in light distributions, such as star-formation, galaxy interactions/mergers,

and projection effects such as dust lanes. There is a general correlation between the

asymmetry value and the (B − V ) colour (Conselice et al. 2000a). Since most galaxies
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Figure 5.13: Asymmetry vs clumpiness, as defined in equations (5.6) and (5.7), for 6 arcmin2

square images with limiting magnitude I = 25. Panels are ordered as in Figure 5.11.

are not edge-on systems, star formation and galaxy interactions/mergers are the dom-

inant effects that produce asymmetries in real galaxies. These two effects can often be

distinguished, however. Systems with asymmetries A > 0.35 are generally created by

interactions or mergers (Conselice 2003, Conselice et al. 2003). However, other merger

events can have more modest asymmetry values. From this and more detailed studies

of the asymmetry index, it has been concluded thatA is most sensitive to bulk structures

in galaxies (Conselice 2003).

The clumpiness parameter, S, is a measure of the high-spatial frequency component

of galaxies. It is calculated by smoothing a galaxy’s image with a smoothing length

σ, then subtracting this smoothed version Iσx,y from the original image. This leaves a

residual map containing only those features with a high-spatial frequency. Summation

is again performed over pixels within the η = 0.2 Petrosian radius, although those from

the central cusp are ignored. Also including a correction for the background Bx,y, the

clumpiness is then defined as
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HDF-N HDF-S Simulation with Full
δ-function PDF simulation

〈C〉 3.11 3.13 3.03 3.07
rms C 0.39 0.40 0.44 0.42
〈A〉 0.18 0.17 0.19 0.07

rms A 0.20 0.22 0.27 0.25
〈S〉 0.23 0.28 0.27 0.08

rms S 0.28 0.28 0.15 0.19
rms e 0.64 0.64 0.62 0.62

Table 5.1: Galaxy morphology statistics. The first two columns show results for real objects,
taken from the Hubble Deep Fields. Compare this with objects in simulations created using a
δ-function PDF or the full shapelet-morphing procedure.

S ≡ 10×
∑
xy |Ix,y − Iσx,y| −

∑
xy |Bx,y −Bσx,y|∑

xy Ix,y
. (5.7)

The clumpiness index is sensitive to the instantaneous rate of star formation, and cor-

relates very well with Hα equivalent widths; it also correlates to a lesser degree with

broad-band colors (Conselice 2003). Other details of its calculation and properties are

discussed in detail in Conselice (2003).

We also use the Petrosian radius R (Petrosian 1976) to characterise the galaxies, de-

fined as the position where η = 0.2. The Petrosian radius is found to be a better index

than the SEXTRACTOR FWHM radius for determining morphological sizes, as SEXTRAC-

TOR radii are based on isophotal thresholds which will represent different physical dis-

tances from the galactic centre depending on the distance to the galaxy. Because η is a

ratio of surface brightnesses in a given galaxy, the run of η with r in a galaxy is immune

to many such types of systematic effects (Sandage & Perlmutter 1990) and Petrosian

radii are found to be a stable tool for deriving morphological parameters independent

of distance (Bershady et al. 2000).

We are now in a position to compare the measurements for C , A, S and R for real

and simulated images. Projections from this morphological parameter space for real and

simulated data are displayed in figures 5.11–5.13, and relevant statistics are compiled in

table 5.1.

As can be seen from the scatter in the plots, the agreement between simulations and

real data is rather good: we are very pleased by the encouraging results. The matching

distributions of the concentration parameter puts to rest one criticism frequently lev-

elled at shapelets (see §4.1.3), that a truncated Gaussian-Laguerre expansion may not

stretch far enough spatially to capture the extended wings of typical astronomical ob-

jects. Clearly our algorithm sets nmax high enough to avoid this problem while still

modelling the HDF galaxies using only a few coefficients.
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The final population of simulated galaxies does contain asymmetry values lower

than those in the real data, although the distributions agree within 1σ. This slight dis-

crepancy is neither due to deficiencies in the shapelet modelling procedure, nor to the

increased clustering of galaxies at short separations in real data, because it is absent from

the simulation created with a δ-function PDF. Decreased object asymmetry must there-

fore be a by-product of the PDF smoothing. There is no obvious a priori reason why this

should happen. Evenm states are symmetric and oddm states anti-symmetric, so if the

absolute values of all coefficients are randomly changed by the same amount, the overall

symmetry of the object should stay constant. However, our nearest-neighbour prescrip-

tion from §5.2.5 results in an average smoothing length across typical evenm states, and

particularly the m = 0 states, of approximately twice that for odd m states. This may

simply be because the first state is even, and the smoothing length tends to get shorter

as n increases. A more sophisticated adaptive smoothing method might be found to

prevent this effect, but we have not pursued that idea here. We note the asymmetry

discrepancy, but note also that it is relatively small.

The behaviour of the clumpiness parameter is also reasonable. Truncation in shapelet

modelling smooths galaxies slightly, and thus removes the tail of objects with very high

S. Morphing in shapelet space apparently acts to then smooth some of the galaxies

further. This is peculiar because, if anything, the galaxies in figure 5.3 appear by eye

to become more clumpy as the smoothing length is increased. Overall, the agreement

of the simulated distributions with real data is remarkably consistent with the field-to-

field variation between the two HDFs. Indeed, clumpiness is a rather unstable statistic

to measure. For example, even the slight rise in mean clumpiness for the δ-function

simulation might be significant: especially since it is apparent despite the missing tail

at high S. It is possible that the increase is caused by residual artefacts in the shapelet

models, but more plausibly because the noise in our simulated images is not correlated

between adjacent pixels. The HDFs themselves have been DRIZZLEd in order to achieve

their high resolution, a process which also aliases the image. As a simple approximation

to this effect, we have tried smoothing the noise slightly in our simulations, by a top hat

kernel 3 pixels wide. This process does indeed remove the slight disparity observed in

the simulated clumpiness distribution, but simultaneously creates many false detections

of faint, circular objects from the noise at the magnitude limit around I ≥ 29.
Therefore we conclude that our shapelet simulations obtain similar morphology dis-

tributions to those found in real data. This is most encouraging as these were not ar-

ranged by construction, and the level of realism seen here is a strong vindication of the

shapelet modelling of galaxies. Perturbing shapelet parameters to create new galaxies

can introduce a few minor deviations, but these are small compared to natural varia-

tion between objects, and are well understood and quantified. We can therefore use

shapelets as a tool for investigating galaxy morphology and for creating realistic simu-

lated images.
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5.3.3 Comparison to other methods

There have been many packages in the literature which simulate astronomical observa-

tions, including SKYMAKER (see Erben et al. 2001) and ARTDATA in IRAF (Tody 1993).

These typically parametrize galaxy shapes using simple physical models such as ellipses

with de Vaucouleurs or exponential profiles. The smooth variation allowed for these pa-

rameters enables them to generate an unlimited number of unique simulated galaxies.

These methods are particularly valuable for simulating images from ground-based tele-

scopes. Unfortunately, deep images from HST contain galaxies with resolved features

more complex than these analytical models, so such simulations are useful in only a

limited regime.

This was realised by Bouwens, Broadhurst & Silk (1998), who designed simulations

to investigate the evolution of galaxy morphology in the HDF. Indeed, their work suc-

ceeds in ruling out pure luminosity evolution of galaxies: which precisely demonstrates

the need for deep image simulations to contain more irregular and asymmetric mor-

phologies. Their method repeatedly places the few brightest HDF galaxies onto a sim-

ulated image, and is similar to that which ours would have been, had we left the PDF

as an (unsmoothed) sum of δ-functions. Some physics can be added to rescale and red-

shift these few sources, but it remains a very small population from which to simulate

a large imaging survey, and containing members drawn exclusively from the local uni-

verse. Creating realistic images was not the intention of Bouwens, Broadhurst & Silk

(1998) and, for our objectives, their method would require the addition of more physics

(e.g. galaxy evolution, star formation histories, redshift distributions, etc.).

Our technique attempts to capture the best aspects of both methods, by defining a

smooth parameter space that can yield an unlimited number of unique galaxies, but also

contains a rich diversity of their morphologies (potentially any morphology, in fact, since

the set of shapelet basis functions is complete). Since the parameter space is populated

via statistical rather than physical arguments, it is the many tests to which we have

subjected our simulated images that demonstrate the validity of our method. We find a

regime spanning six orders of magnitude in luminosity where our simulations are valid,

and their statistical properties match those of real data. This ability to produce simulated

images containing galaxies with realistic morphologies is a significant advance.

A useful extension to this work will be to include ‘Groth survey strip’ (Groth et al.

1994) galaxies and ACS data when constructing the morphology probability distribu-

tion. This will provide future simulations with a more extensive sample of large, bright

galaxies, improving the fidelity of the simulations in this region of parameter space. A

method is also in development to generate multi-colour simulated images using several

HDF passbands and photometric redshifts.
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Future cosmic shear surveys

6.1 The next generation of surveys

6.1.1 Future goals for weak lensing

The most important responsibility for any lensing survey is the control of observational

systematics. Almost all of these effects act to increase the observed signal by mimick-

ing (in some cases very realistically) the shear induced by gravitational lensing. Per-

haps the most reassuring result from current cosmic shear surveys is therefore the broad

agreement between measurements taken on different telescopes, and by different groups

using different analysis methods. This agreement has demonstrated the success of grav-

itational lensing as a direct probe of the dark matter distribution with the control of its

systematic effects at roughly the ∼ 10% level. The next obvious steps are to tighten this

control by using improved analysis techniques (perhaps shapelets), and to tighten the

cosmological parameter constraints from two-point statistics by performing larger, dedi-

cated lensing surveys. These should also be able to measure three-point statistics, which

provide an independent constraint on Ωm (Bernardeau, van Waerbecke & Mellier 1997).

Lensing surveys can also achieve more than simple cosmological parameter con-

straints. Techniques for weak shear measurement has now been successfully demon-

strated to the wider astrophysical community, with the requests for further accounting

for systematic effects provided via the E-B decomposition and other cross-checks. It

has also become possible to locate halos in cosmic shear surveys, selected purely by

their mass (e.g. Wittman et al. 2001; 2003). Mass reconstructions from weak lensing data

135
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will also become increasingly useful (§6.4.2). Through shear inversion (Kaiser & Squires

1993) or aperture mass statistics (Schneider & Bartelmann 1997), lensing can be used to

create maps of the dark matter distribution. These can be compared directly to the light

distribtuion, to invesitagate bias as a function of scale.

Peaks in the mass maps can also be isolated, to form a mass-selected cluster cata-

logue (e.g. Weinberg & Kamionkowski 2002; Hoekstra 2002). This would be an invalu-

able input into classical tests of cosmology, including halo abundancy statistics. Quan-

titative study of high-sigma mass fluctuations is one of the most promising methods

to break degeneracies in cosmological parameter estimation, particularly constraining

Ωm (e.g. van Waerbeke & Mellier 1997; Cooray, Hu & Miralda-Escudé 2000; Munshi &

Jain 2001; Schneider 2002). The next generation of lensing surveys should be able to

measure higher-order statistics of the density distribution and thus investigate its non-

Gaussianity. This might be brought about by non-Gaussian primordial seeds, topolog-

ical defects, or the complicated process of non-linear structure formation. In the latter

case, the evolution in skewness over time would provide a direct test of the gravitational

instability paradigm for structure formation.

Furthermore, studying individual groups and clusters from high resolution mass

maps, rather than treating mass fluctuations statistically, will lead to a better under-

standing of astrophysical phenomena like biasing or the mass-temperature relation (Wein-

berg et al. 2002; Huterer & White 2003; Smith et al. 2003). Large mass overdensities can

already be found within our WHT survey (Massey et al. in preparation), and dark mat-

ter maps have been recovered from Subaru data (Miyazaki et al. 2002). However, the

mass sensitivity and resolution of such maps is limited primarily by the number density

of useable background sources. Even with a perfect shear measurement method, many

source galaxy shapes need to be averaged in any one resolution element. This is most

easily achieved by deeper imaging, and in better seeing. With more accurate photome-

try, it may also be possible to measure a simultaneous constraint from the magnification

effect of weak lensing (Jain 2002).

Although gravitational lensing is achromatic and shape measurement may be per-

formed in any colour, future surveys will benefit greatly from multi-colour data. Reli-

ably ascertained photometric redshifts will reduce the current errors due to uncertainty

in the source redshift distribution (and remove the need for the single source sheet ap-

proximation). They will also enable redshift tomography to trace the evolution of struc-

ture (Refregier et al. 2002); and even make possible an entirely 3D mass reconstruction,

as demonstrated in Taylor (2003a), Hu & Keeton (2002), Bacon & Taylor (2002), Massey

et al. (2003) and Jain & Taylor (2003). 3D dark matter mapping and mass-selected cluster

catalogues will directly trace the evolution of structure. The knowledge of this evolution

places a strong lever arm on constraints for the equation of state parameter w of Dark

Energy, via its effect upon the cosmological growth rate of structures. Essential for this

technique are well-resolved, multi-colour images of background galaxies out to large
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distances.

Such dramatic improvements in both the quality and quantity of weak lensing data

will leave future measurements limited by the precision of shape measurement algo-

rithms. The Kaiser, Squires & Broadhurst (1995; KSB) method used in chapter 3 and

throughout the literature is nevertheless decidedly out of date. Erben et al. (2001) found

KSB able to recover shears between 1% and 3% with a precision of 10%→ 15%. Bacon

et al. (2001) found similar results, plus the necessity for an (unexplained) calibration fac-

tor. Modern shape measurement techniques are being developed, to incorporate higher

order shape moments or Bayesian statistics. In order to make full use of future cosmic

shear surveys, such methods will need a shear sensitivity of around 1%. Some of these

methods will be discussed further in §6.3.3.

6.1.2 Cosmological models with Dark Energy

We consider a cosmological model with the same matter components as in chapter 2,

plus an additional dark energy (or “quintessence”) component with present density pa-

rameter ΩQ. The equation of state of the dark energy is parametrized by w = pQ/ρQ,

which we assume to be constant, and which generalises the case for a cosmological con-

stant, where it is equal to −1. The evolution of the expansion parameter a is given by

the Hubble constantH through the modified Friedmann equation

ȧ2

a2
=H20

(
Ωma

−3 +ΩQa
−3(1+w) +Ωκa

−2
)
, (6.1)

where the total and curvature density parameters are Ω and Ωκ = 1−Ω, respectively.

Dark energy has several effects on weak lensing statistics (Ma et al. 1998). First,

it modifies the expansion history of the universe a(t). As a result, both the angular-

diameter distance and the growth rate of structures are modified. The latter effect is

amplified by the non-linear evolution of structures. In some quintessence models, dark

energy also modifies the linear power spectrum on large scales. We will ignore that effect

since these scales are not easily probed by weak lensing surveys.

6.1.3 Ground-based lensing surveys

Several new instruments have been built with weak lensing in mind and installed on

telescopes where a large survey can be carried out. MEGACAM (Boulade et al. 2000) has

been installed on the 3.6m Canada-France-Hawaii Telescope (CFHT) on Mauna Kea. It has

a 1 square degree field of view, with 0.19′′ pixels, and, importantly has a large fraction

of telecscope time dedicated to a survey mode. The CFHT Legacy Survey began in mid-

2003 and, over the following 5 years, will image 208 square degrees in u, g′, r′, i′ and z′

bands, down to r′ = 25.7. The r′-band observations are scheduled as overrides during

good weather to permit accurate shape measurement. If problems with camera optics
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can be solved, this survey should produce image quality similar to our WHT observa-

tions but over a huge area to drive down noise and tighten constraints on cosmological

parameters.

Suprime-cam (Miyazaki et al. 2002b) has been installed on the 8.2m Subaru telescope

on Mauna Kea. It has a 0.25 square degree field of view, and a pixel scale of 0.20′′.

The camera was specifically designed for weak lensing measurements, and has excellent

image quality with median seeing of 0.61′′. An ongoing survey of ∼ 40 square degrees

using this large telescope combines the high image quality and data acquisition rate

of Keck with the large field of view of WHT. Measurements of the shear correlation

function on many scales should determine σ8Ω
0.6
m to within 3%, and a measurement

of the skewness of the convergence field should break this degeneracy, providing an

independent constraint upon Ωm within 8% (Miyazaki 2003, personal communucation).

Other telescopes, whose entire design is being optimised for weak lensing, are also

under construction. The 4m Visible and Infrared Survey Telescope for Astronomy (VISTA)

is being built at Cerro Paranal in Chile (http://www.vista.ac.uk), with first light

is expected in early 2006. VISTA will then spend ∼ 75% of its time dedicated to long-

term surveys, including a cosmic shear survey. Its wide-field cameras include a 1 square

degree near-IR camera with 0.34′′ pixels, plus (possibly) a 2.25 square degree optical

camera with 0.25′′ pixels. The image quality should be ideal for weak lensing, given the

specialised options that were considered during its design, including the simultaneous

use of two guide stars to improve tracking and reduce field rotation during exposures.

The Large-aperture Synoptic Survey Telescope (LSST) is a proposed 8.4m telescope, with

a three mirror design that creates an effective 6.9m primary mirror (http://www.lsst.

org). At the time of writing, LSST has not yet secured funding, but it holds great promis-

ing for future weak lensing measurements and time-domain studies. LSST’s 7 square

degree field of view will enable it to survey all of the sky (about 14,000 square degrees)

visible from the telescope site to R = 24 in five nights. This process will be continually

repeated, and the stacked images should be excellent for weak lensing analysis. The

three-mirror design reduces astrometric distortions across the wide field, and the 2 Gi-

gapixel CCD produces a pixel scale of 0.2′′.

6.1.4 Space-based lensing surveys

Although dedicated ground-based surveys can image large areas relatively quickly, the

figure of merit for a lensing survey needs to include more than the oft-quoted étendue,

a product of the survey area and the flux gathering power of a telescope (Tyson et al.

2002; Kaiser et al. 2002). An ideal weak lensing survey must also boast a control over

observational systematics, minimise image degradation due to the PSF, and account for

the size-magnitude distribution of its resolved background galaxies

Observing from space is the ideal way to increase the sensitivity, depth and resolu-
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tion of weak lensing surveys, while simultaneously reducing the systematics that hinder

shape measurement. The higher number density of useable source galaxies improves the

sampling of the shear field, and more information can be extracted from each highly-

resolved object. This qualitatively improves the performance of a survey for weak lens-

ing, and opens up new opportunities to which surveys can advance. Shear sensitivity

is raised for a spacecraft over a ground-based telescope for the additional reasons listed

below.

• More objects have measurable shapes

Although not as much sky area could be surveyed as from the ground, the spatial

density of resolved objects is an order of magnitude (compare figure 6.7 with those

in chapter 3). This more densely samples the cosmic shear field, allowing the study

of individual mass structures in their own right, as well as the statistical ensemble.

• The shape of individual galaxies are more precisely measure d

Not only is the image resolution higher from a diffraction-limited PSF in space, but

many other observational hindrances are removed. Tracking errors, telescope flex-

ure and variable focus misalignment are all negligible in a long orbit. Correction

for PSF and instrumental distortions is much easier above the atmosphere, and cal-

ibration can be performed upon a set of many images rather than from the limited

information available in each one alone. Shape measurement becomes more accu-

rate for each galaxy sampling the cosmic shear field; and more reliable, or possible

at all, for small, distant galaxies.

• Galaxy redshifts are known accurately and to a greater depth

Stable photometry and the ease of observing in the infra-red without atmospheric

absorption lines permots the calculation of photometric redshifts with the best pos-

sible accuracy. This improves estimates of the redshift distribution of source galax-

ies, uncertainty in which is a major contribution to the error budget in current

lensing surveys. Projected 2D power spectra and maps can be drawn in several

redshift slices, using redshift tomography. More ambitiously, cluster catalogs and

dark matter maps can be constructed directly in 3D (Bacon & Taylor 2002; Massey

et al. 2003), enabling the 3D correlation of mass and light and the tracing of the

growth of mass structures.



140 Chapter 6. Future cosmic shear surveys

• Galaxies are farther away

The higher resolution and especially the much deeper magnitude limits possible

from space means that the source population is both more distant and spread over

a wider range of redshifts. The emergence and growth of structures can there-

fore be traced from earlier epochs, giving a better handle on cosmological param-

eters (see paper III). Furthermore, recent numerical simulations (Jing 2002; Hui &

Zhang 2002) suggest that intrinsic galaxy alignments impact lensing surveys to a

greater depth in redshift than previously assumed. If this is confirmed, intrinsic

alignments will mimic and bias cosmic shear signal in all but the deepest surveys,

where the galaxies are farther apart in real space. Using 3D positions of galaxies

from SNAP photo-zs, it will be possible to isolate close galaxy pairs and to mea-

sure their alignments, or to optimally down-weight close pairs thus reducing their

impact (King & Schneider 2002; Heavens & Heymans 2002).

Weak lensing observations are thus ideally suited to a wide-field space-based imager.

Relatively small-scale observations have already been successful using HST (Refregier

et al. 2002; Rhodes et al. 2001; Casertano, Ratnatunga & Griffiths 2003). These partic-

ularly improve the measurement of shear correlations in galaxy pairs at close angular

separations. However, the limited field of view avaiable from HST makes larger surveys

prohibitively time-consuming. As a concrete example of the dedicated surveys that will

become available around the end of this decade, we shall consider the planned Super-

nova/Acceleration Probe (SNAP) mission. Engineering models for SNAP are sufficiently

well developed for us to perform detailed and quantitative simulations of its perfor-

mance in order to predict its sensitivity to weak gravitational lensing. Most of SNAP’s

engineering limitations and design trade-offs will indeed be borne by any similar wide-

field imager in space. SNAP can therefore be considered a quantitative baseline for any

generic space mission in the near future.

6.2 Supernova/Acceleration Probe (SNAP) satellite

6.2.1 Mission overview

The Supernova/Acceleration Probe (SNAP) satellite is a wide-field 2m space telescope,

funded jointly by the United States’ Department of Energy and NASA, and planned

for launch in 2010. The acronym may seem portentous, but apparently the word “snap”

is not a synonym for “break suddenly” in American English. The latest design from the

Lawrence Berkeley Laboratories is shown in figure 6.1. SNAP’s primary objective is to

detect type Ia supernovæ at high redshift. After various calibration factors derived from

their light curves and spectra, these can be used as standard candles to extend Hubble’s

law to greater distances. Observing several thousand supernovæ out to z ∼ 1/7 will
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measure the deceleration parameter q and the Dark Energy equation of state parameter

w with a precision of about 10%. SNAP will also be used for a weak lensing survey that

will provide complementary constraints on cosmological parameters and address some

of the issues in the previous section.

SNAP will be placed in a long three-day orbit, spending little time in the shadow

of the Earth and with a constant orientation to the sun (Rhodes et al. 2003). This steady

thermal environment will create a more stable PSF, improving deconvolution and more

accurate correction for the distortion of objects’ shapes. After its initial cool-down and

calibration period, SNAP will begin approximately 40 months’ of observation in a twin

survey strategy that is discussed in sections §6.2.3 and §6.2.4. Extra time spent observ-

ing calibration frames, transmitting data to Earth or passing through radiation zones on

the orbit give the telescope a predicted observing efficiency of 85% during the primary

missions. After their completion, SNAP is likely to be operated as a guest observer ob-

servatory on a competitive basis. For further details of the SNAP mission see Aldering,

et al. (2002), Kim, et al. (2002;2003), Lampton et al. (2002a; 2002b), Massey et al. (2003a;

2003b), Refregier et al. (2003), Rhodes et al. (2003) Tarle et al. (2002) and Perlmutter et al.

(2002).

6.2.2 Instrumental characteristics

Many of the stringent optical requirements for following the light curves of faint su-

pernovæ are compatible with the desired instrumental properties for measurements of

weak lensing. Indeed, most of SNAP’s limitations and trade-offs will be born by any

similar wide-field imager from space. The detailed engineering models which are avail-

able for SNAP therefore act as a useful baseline for a generic space mission which will

inevitably face similar engineering difficulties and reach similar solutions.

SNAP will have a 0.7 square degree field of view, wider than that of HST and with∼
5×higher instrument throughput, enabling it to efficiently survey the large area needed

to constrain cosmological parameters. The focal plane will be covered by a mosaic of

six optical and three near infra-red fixed filters spanning 350nm–1.7µm (Perlmutter et

al. 2003). These will be permanently attached to the detectors and unmovable once the

spacecraft is deployed but arranged in a pattern that allows a contiguous survey region

to be imaged in all nine bands by scanning the telescope in steps across the sky. The

NIR detectors are twice as big as the optical CCDs, conveniently doubling the exposure

times in NIR bands compared to those in the optical, and enabling excellent photometric

redshifts. The NIR colours are essential for this purpose, as we shall see in section §6.3.6.

The FWHM of the PSF will be approximately 0.13′′at 800nm, where galaxy shapes

are likely to be measured. The high and thermally stable orbit will keep the PSF (and

any internal optical distortions that could otherwise mimic cosmic shear) even more

constant than that of HST (which “breathes” as it enters and exits a huge temperature
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Figure 6.1: Cutaway view of the proposed SNAP satellite design, reproduced courtesy of the
SNAP collaboration. This view shows the internal light baffles, the 2m primary mirror and the
three sturdy support struts of the secondary mirror. The solar panels are fixed to the outside of
one side of the craft, with a radiator in the opposite direction. Their orientation with respect to
the sun is permanently maintained in order to minimise thermal expansions and contractions
that would otherwise induce optical distortions, mimicking the shear produced by gravitational
lensing.
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differential inside the shadow of the Earth). SNAP’s PSF will be constantly monitored

via the examination of non-saturated stars that happen to fall within the survey and

occasional observations of globular or open star clusters. These will be required at least

at the beginning and end of the survey, and each time there is a focus change in the

telescope. The main contributions to the PSF are diffraction from the aperture and the

three secondary support struts; geometric abberations along the optical path; and charge

diffusion within the CCDs. These effects were modelled by Rhodes et al. (2003), using ray

tracing through the latest engineering models of the telescope design. Their simulation

of the baseline or time-averaged SNAP PSF is shown in figure 6.2, along with a shapelet

decomposition. Note, for example, the excess power in the m = ±6,±12 modes due to

diffraction from the three secondary support struts. We shall not consider here the small

variation of the PSF over time or across the focal plane. We assume that these effects can

be modelled accurately and accounted for during the data reduction.

The stable photometry from the three-day orbit may even permit the use of weak

lensing magnification as well as shear information (see e.g. Jain 2002; 2003). Whether

directly measured or inferred from the shear field, this in turn is useful to correct for

the effect of lensing on the distance moduli to the SNAP supernovæ (Dalal et al. 2003;

Perlmutter et al. 2002).

6.2.3 Wide survey strategy

The SNAP survey strategy is divided into two primary missions. A wide survey will

cover 300 square degrees in all nine bands. Four dithered 500s exposures will be taken

at each pointing to reach a stacked depth of AB 27.7 in R (for a point source at 5σ). The

wide survey will take five months to complete.

The wide survey has been designed primarily for weak lensing and the sacrifice of

depth for width will put the tightest possible constraints on cosmological parameters.

The large observed area reduces the need for a scattered-field, pencil-beam survey ap-

proach like that used with WHT and Keck to reduce the impact of cosmic variance.

Therefore, the survey will be contained within one or two contiguous areas, in order to

improve the sensitivity to various other science investigations, and also to consider more

goals for the weak lensing survey. For example, the stable optics will allow shear corre-

lation functions to be measured between galaxies on different exposures, and therefore

at pair separations that can extend into the linear regime of the power spectrum.

6.2.4 Deep survey strategy

The SNAP mission will also include a deep survey, covering 15 square degrees in all nine

bands, to a much fainter magnitude limit. Four 300s observations will be taken, once

every four days, over a period of 32 months. The differences between successive images

will be searched for type Ia supernovæ and to measure their light curves. Stacking all
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Figure 6.2: Shapelet decomposition of the proposed SNAP PSF. Top panel: a horizontal slice
through the center of the real (solid line) and shapelet-reconstructed (dashed line) PSF. The mid-
dle panels shows, in 2-dimensions, the real PSF, its recovery using shapelets and the residual
difference between the two, from left to right respectively. Bottom panel: the moduli of the cor-
responding polar shapelet coefficients with order up to nmax = 12. Note that all intensity scales
are logarithmic. The circular (m = 0) core is modelled to an accuracy of about 10−3 and the be-
ginnings of six-fold symmetric structure is seen as power in the m = ±6 and m = ±12 shapelet
coefficients.
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the many exposures will also create a very deep image with a total integration time of

144,000s in each optical filter and twice that in each infrared filter. This will reach an AB

magnitude of 30.2 in R (for a point source at 5σ).

Approximately 60% of the observing time will be spent on imaging. The remaining

40% of the time will be spent obtaining spectra of supernovæ. During spectroscopy,

the imagers will be left switched on and any coincidental further integration within the

survey region will be in addition to these numbers.

The deep survey will be useful for several weak lensing studies. The extremely high

number density of resolved background galaxies can produce a detailed two-dimensional

(projected) map of the mass distribution which shows clusters, filaments, and structure

down to the scale of galaxy groups. The nine filters will provide photometric redshifts

for almost all these galaxies, accurate to ∆z ≈ 0.04. This will allow the division of the

detected galaxies into redshift bins in order to trace the evolution of the mass power

spectrum. Furthermore, recent theoretical developments make possible a direct inver-

sion of the shear distribution, simultaneously taking into account all the redshift infor-

mation (Taylor 2001; Hu & Keeton 2002; Bacon and Taylor 2002; paper II). Using this

technique, mass maps can also be created directly in three dimensions. A mass-selected

cluster catalogue can then be extracted from these.

6.3 Simulated SNAP observations

6.3.1 Shapelet-based image simulations

The shapelet-based image simulation method described in chapter 5 was developed pre-

cisely to mimic deep, high resolution space-based data. It is therefore ideal to simulate

the performance of SNAP, and has been tuned to the instrument and mission specifica-

tions outlined in section §6.2. We shall attempt to measure the shear field in simulated

data at a variety of noise levels and after convolution with the SNAP PSF. Since all of the

galaxies possess a well-known size, magnitude and input shear, the comparison of input

shear to output shear will allow us to determine the recovery accuracy and the precision

possible from this mission.

The presence of realistic and irregular galaxy morphologies in the simulation is vi-

tal for this procedure, because an object’s response to shear is a function of its overall

shape. Earlier work (Bacon et al. 2001; Erben et al. 2001) used only azimuthally sym-

metric simulated galaxies: oversimplifying the task. Figures 6.3 and 6.4 show 30′ × 30′
sections of shapelet-based image simulations of the SNAP wide survey and to the depth

of the HDF. The SNAP deep fields will be about 2 magnitudes deeper than the HDF.

However, deeper surveys with the ACS on board HST are awaited to accurately model

the galaxy number counts and morphology distribution at this depth. They can be com-

pared to a simulated HST image in figure 5.4, or a section of the real HDF in figure 5.5.
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Figure 6.3: 30′′× 30′′ portion of a simulated SNAP I-band image to the depth of the proposed
SNAP wide survey.

Figure 6.5 shows the size-magnitude distribution of the simulated images to both depths

(top panels). Once again, the simulations reproduce the statistics of the real HDFs (bot-

tom panels).

The predicted SNAP PSF at the middle of the illuminated region of the focal plane

was obtained for the current satellite design using raytracing, aperture diffraction and

CCD diffusion by Rhodes et al. (2003). The PSF and its decomposition into shapelets are

illustrated in figure 6.2. As shown on the top panel of figure 6.2, our model includes

the second diffraction ring and is accurate to nearly one part in 103. It does not include

much of the extended low-level diffraction spikes, which we ignore. Convolution with

this residual PSF pattern adds less than 0.7% to the ellipticity of any exponential disc

galaxy that passes the size cut into the lensing catalogue (see §6.3.3). Given the further

factor of G−1 in equation (6.5), to convert ellipticity into shear, this residual thus has a

negligible impact upon shear measurement within the accuracy of the current methods.

Simulated images used to calibrate the shear measurement method (see §6.3.3) are
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Figure 6.4: 30′′× 30′′ portion of a simulated SNAP I-band image to the depth of the Hubble Deep
Fields. The SNAP deep survey will be deeper than this, but further real data from the ACS on
HST are awaited to accurately simulate the galaxy number counts and morphology distribution
at these depths.

first sheared and then convolved with the full SNAP PSF shown in figure 6.2. For this

application, it is essential that the shearing is applied before the smearing. Shear mea-

surement methods have been designed to correct for precisely this sequence of events,

which occurs in the real universe. However, our simulated galaxies were modelled on

real HDF objects which had already been naturally convolved with the WFPC2 PSF

when the HDF images were taken. Consequently, our simulations exhibit smoothing

from both a circularised WFPC2 PSF, (plus shearing), plus a SNAP PSF. This double PSF

artificially reduces the rms ellipticity of galaxies by approximately ∼2% and increases

the size of a point source by 22%. One should note that the first PSF convolution occurs,

and the galaxy orientations are randomized, all before shearing. This effect therefore

corresponds to a small alteration in the intrinsic shape distribution of galaxies but does

not bias the shear measurement.

Simulated images used to predict the lensing efficiency as a function of exposure time
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(see §6.3.4) are produced differently. It is essential to ensure realistic size distributions

and galaxy number counts in these simulations. However, they do not need to have an

artificial shear added. The randomised orientations of simulated galaxies ensures that

the mean shear is zero, with merely a scatter of object ellipticities due to their intrinsic

shapes. The objects are then convolved by the PSF difference between the HST and

SNAP. This is obtained by deconvolving the WFPC2 PSF from the SNAP PSF model,

in shapelet space. Smoothing galaxies with this smaller kernel is enough to convert an

observation with HST to one with SNAP, ensuring a correct distribution of galaxy sizes

and rms ellipticity, although with zero mean shear.

6.3.2 Limitations of the simulations

Although every effort has been taken to ensure the realism of the image simulations,

they are not completely perfect. We shall need to bear in mind the following limitations:

• No instrumental distortions or cosmic rays

The SNAP wide survey strategy includes four dithered exposures at each point-

ing. This will enable the removal of cosmic rays and, if necessary, the simultane-

ous measurement of instrumental distortions. Because of the high orbit and slow

thermal cycle, instrument flexure and the PSF are expected to be very stable (see

Rhodes et al. 2003). It should therefore be possible to map internal distortions and

compensate for them even on small scales, using periodic observations of stellar

fields. Consequently, neither cosmic rays nor astrometric distortions are added to

the simulations.

• Single exposures

The SNAP CCD pixels are 0.1′′ in size and thus under-sample the PSF. To com-

pensate for this, several dithered exposures will be stacked, as usual for HST im-

ages, using the DRIZZLE algorithm (Fruchter & Hook 2002). (Alternatively, galaxy

shapes may be fitted simultaneously from all of the exposures.) DRIZZLE recovers

some resolution, and will be particularly effective for the multiply-imaged SNAP

deep survey, but has the side-effect of aliasing the image and correlating the noise

in adjacent pixels. We have not yet included this entire pipeline in the simulations,

but merely implemented a smaller pixel scale and model background noise that is

higher in each pixel (although uncorrelated). Following the example of the Hubble

Deep Field final data reduction, we choose 0.04′′ pixels. Unfortunately, the detec-

tion and shape measurement of very faint galaxies is sensitive to the precise noise

properties of an image. Because of these instabilities, our simulated images are
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Figure 6.5: Size vs magnitude as determined by SEXTRACTOR with a S/N cutoff at ν = 1.5. Top
panels are for simulated SNAP I band images of the same size as the Hubble Deep Field. For
reference, the bottom panels are of the HDFs themselves using the same SEXTRACTOR parame-
ters.

only reliable down to approximately I ≃ 29.5 (see Massey et al. 2003). This is just

below the magnitude cut applied by our shear measurement method at I = 29.1.

A further investigation will include full use of DRIZZLE and more detailed noise

models. We will also address the issue of pointing accuracy, and consider the con-

sequences of ‘dead zones’ around the edges of the pixels which house the CCD

electronics and are therefore unresponsive to light.

• Based upon the HDF

The image simulations are based upon the galaxies in the HDF, which is itself a

special region of space selected to contain no large or bright objects. As a result,
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our simulations do not yet include these either. The source catalogue is being

expanded as GOODS ACS data becomes publicly available.

• Monochromatic

The image simulations are currently monochromatic, in the HST F814W (here-

after I) filter. Since gravitational lensing is achromatic, shear measurement can be

performed in any band: indeed, all tested shear measurement methods so far use

only one colour at a time. I or R bands are typically chosen for shear measure-

ment because of the increased galaxy number density, advanced detector tech-

nology, and small PSF at these wavelengths. Surveys like COMBO17 (Brown et

al. 2003), and VIRMOS/Descartes (van Waerbeke et al. 2002) are leading a trend

to use additional multicolour photometry to provide photometric redshifts of the

source galaxy population. The SNAP surveys will be simultaneously observed in

9 bands. We have not simulated this multicolour data, but it will inevitably raise

the S/N of shear estimation for every source galaxy. At a minimum, image coad-

dition or simultaneous fits to shapes in several colours will increase the effective

exposure time. Something more ambitious, like shifting to the rest-frame R or the

rotating disc dis-alignment suggested by Blain (2002), might even reduce system-

atic measurement biases. Further work is needed in cosmic shear methodology to

investigate the optimal use of multicolour data. However, it can already be said

that our current monochromatic approach will yield a conservative estimate of the

lensing sensitivity expected from future analyses.

6.3.3 Shear measurement method

We shall now attempt to recover the known input properties of our simulated images,

by measuring galaxy shapes in the noisy data. The accuracy and calibration of shear

measurement methods will determine the precision with which it will be possible to

measure shear from any observations with a given level of noise. A selection of modern

shear measurement methods are currently in development, which will be as sensitive

or more sensitive than KSB. These methods include shapelets (Refregier & Bacon 2003;

Refregier, Massey & Bacon in preparation) and others that incorporate higher-order or

differently-normalised shape moments, Bayesian statistics, or other ideas (e.g. Bernstein

& Jarvis 2002; Bridle et al. 2003; Kaiser 2000).

Of these, the most developed method is the shapelets-based shear measurement

method described in Refregier & Bacon (2003). However, since the images themselves

were created using shapelets, we shall not use the shapelets. We shall therefore conser-

vatively restrict our investigation to using a variant of the KSB method developed by

Rhodes, Refregier & Groth (2000; hereafter RRG). This method is optimised for space-
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based observations, and has already been used extensively on HST images (Rhodes et

al. 2001; Refregier et al. 2002). It is therefore ideal for our purposes. RRG differs from

KSB by using unnormalised ellipticities during PSF correction, and assuming that the

isotropic part of the PSF is Gaussian. This results in much simpler forms for P sh and

P sm; and keeping the method linear for longer helps to make it more stable (c.f. Kaiser

2000). However, it is only possible to use unnormalised ellipticities because if number

counts of objects is fairly stable between fields; and the extra condition on the PSF is

really only justifiable for diffraction-limited observations from space.

Similarly to KSB, RRG forms a measure a galaxy’s two-component ellipticity ǫi from

the Gaussian weighted quadrupole moments of its surface brightness I(θ),

ǫi ≡
{J11 − J22, 2J12}
J11 + J22

(6.2)

where

Jij ≡
∫
d2θ θi θj w(θ) I(θ)∫
d2θ w(θ) I(θ)

, (6.3)

and w(θ) is a Gaussian of width adjusted to match the galaxy size. The unweighted

PSF moments are measured from a (simulated) starfield and RRG corrects the galaxy

ellipticities to first order for PSF smearing. Occasional unphysical ellipticities, |ǫ| > 2,
are excluded, along with galaxies fainter than AB 26.5 (for the wide SNAP survey) or

AB 29.1 (for the deep SNAP survey), or galaxies smaller than

R ≡
√
1

2
(J11 + J22) ≤ 1.7pixels. (6.4)

These values have been chosen to yield reasonably stable results. RRG finally provides

the shear susceptibility conversion factor, G, to generate unbiased shear estimators γ̂i

for an ensemble of objects, given by

γ̂i =
〈ǫi〉
G
, (6.5)

where G depends upon the fourth order moments Jijkl of a galaxy population, defined

similarly to equation (6.3), and is equivalent to the P γ factor in the KSB method. In our

simulated SNAP images, G is of order 1.6.

An artificial shear has been applied uniformly upon all of the objects in a simulated

7.5 arcmin2 deep SNAP survey image, in the γ2 = 0 and γ1 = 0 directions, before the ad-

dition of noise, and convolution with the SNAP PSF. Figure 6.6 demostrates the recovery

using the RRG method to measure galaxy shapes and correct for the PSF smearing. The

recovery is reassuringly linear, although the measured slope (dotted line) is underesti-

mated compared to the expected response (dashed line). This inconsistency is probably

due to instabilities in the KSB-family of shear measurement methods, and may disap-
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Figure 6.6: The applied shear γin in the shapelet simulated images vs its recovery γout using an
independent measurement method (Rhodes, Refregier & Groth 2000). The image used is one 7.5
arcmin2 realization of the SNAP deep survey shown in figure 6.4. The recovery is linear, but the
slope of the fitted line (dotted) is flatter than that expected (dashed line).

pear with better techniques.

For the purposes of our current work, we see this calibration factor as vindication

of the procedure adopted in chapter 3, where an almost identical bias of (0.85± 0.04)−1
was observed when the KSB method was applied to simulated WHT data by Bacon et

al. (2001). We shall therefore apply this linear correction factor to the shears and their

errors measured from WHT data in chapter 3. For the higher-resolution SNAP data, and

at the depth of the SNAP wide survey, this factor is (0.87± 0.04)−1. At the depth of the

HDF, the calibration factor is (0.79± 0.03)−1.

6.3.4 Shear sensitivity of SNAP

We shall now determine the accuracy with which it is possible to recover the input shear

from the noisy data, under a variety of observing conditions. Trade-off studies are under

way for several alternative telescope designs, including the level of CCD charge diffu-

sion, the pixel size, the effect of DRIZZLEing, and the coefficient of thermal expansion
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in the secondary struts, which may be the main cause of temporal variation in the PSF

(see Rhodes et al. 2003). Here we present the results of a study which uses the baseline

design specifications and time-averaged PSF of the SNAP satellite. In this section, the

PSF used is the residual between the HST and SNAP PSFs (see §6.3.1), in order to keep

the size distribution of galaxies realistic for SNAP images.

The top panel of figure 6.7 shows the surface number density ng of galaxies in a

survey of a given exposure time texp on SNAP. The exposure times reflect a∼ 5× overall

improvement in instrument throughput and detector efficiency over WFPC2 on HST

(Lampton et al. 2002). The dashed line shows the number density ng,tot of all the galaxies

detected by SEXTRACTOR, after a S/N cut which is equivalent to I < 29.1 at the depth of

the HDF. As discussed in §6.3.3, galaxies which are too faint, too small, or too elliptical

are excluded from weak shear catalogs. The solid line shows the number density ng of

galaxies which are useable for weak lensing following the magnitude, size and ellipticity

cuts. The error bars reflect the uncertainty in measuring number counts at low S/N and

an estimated sample variance between the HDF-N and HDF-S.

An important cut in the weak lensing analysis is the size cut, which reduces the de-

tected galaxy sample by about 30% at the depth of the HDF. This fraction is a strong func-

tion of PSF size, and is thus much larger for ground based imaging. As can be inferred

from the top panel of figure 6.7, the SNAP wide survey (ng ≃ 100 galaxies arcmin−2)

will thus provide a dramatic improvement over current ground-based surveys (ng ∼ 25
galaxies arcmin−2 are used by most groups; see e.g. Bacon et al. 2002).

The second panel of figure 6.7 shows the median magnitude, Im, of the galaxy cata-

logue before and after cuts in size and ellipticity by the weak lensing analysis software.

This has been converted to a median redshift, zm, using equation (6.9). For the purposes

of this plot, we assume that this relationship is still valid even after the size cut.

The third panel of figure 6.7 shows the rms error σγ = 〈|γ|2〉1/2 per galaxy for measur-

ing the shear, after the PSF correction and shear calibration. The slightly increasing error

at longer texp reflects the decreasing size of fainter galaxies, and correspondingly less

resolved information content available about their shapes. Note that even after apply-

ing the calibration factor of (0.79 ± 0.03)−1 determined in section §6.3.3, there remains

a small but significant difference between the rms scatter of galaxy ellipticities in the

simulations and in real Groth strip data (Rhodes, Refregier & Groth 2001). The standard

shape measures of SEXTRACTOR used in section §5.3 were not sufficiently sensitive to

detect this small discrepancy, but clearly RRG is more exacting. RRG measures σe to

be lower in the simulated images by another factor of ∼ 0.8: perhaps because of the

precise properties of the simulated background noise, or perhaps because the wings of

simulated objects are truncated beyond the SEXTRACTOR isophotal cutoffs. Work is in

progress to establish the precise origin of this effect. For the purposes of this thesis, we

simply increase the error bars by this amount.

To map the shear, the noise can be reduced by binning the galaxies into cells. The



154 Chapter 6. Future cosmic shear surveys

Figure 6.7: Shear sensitivity as a function of SNAP exposure time texp. Top panel: the surface
number density of all galaxies (ng,tot) detected by SEXTRACTOR and of the subset (ng) of these
useable for weak lensing, i.e. having survived further cuts in size and ellipticity by RRG (see
text). Second panel: the median I band magnitude, Im, in the two subsets of the galaxy catalog,
which has been interpreted as median redshift, zm, using equation (6.9). Third panel: the rms error
σγ = 〈|γ|

2〉1/2 per galaxy for measuring the shear γ, after PSF correction and shear calibration.
Bottom panel: the rms error σγ for measuring the mean shear γ in 1 arcmin2 bins. The dot-dashed
line shows an estimate of the expected rms shear in a ΛCDM universe.
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rms noise of the shear γ averaged in a cell of solid angle A = 1 arcmin2 is given by

σγ ≃
σγ√
ngA
, (6.6)

and is plotted in the bottom panel of figure 6.7. The wide and deep SNAP surveys will

thus afford a 1σ sensitivity for the shear of ≃ 3.0% and better than 2.2% on this scale,

respectively. As a comparison, the rms shear expected from lensing on this scale in a

ΛCDM model is approximately 3% (assuming Ωm=0.3, ΩΛ=0.7, σ8=0.9, Γ=0.21). This

signal increases with survey depth because the total lensing along a line of sight is cu-

mulative. The wide SNAP survey will thus be ideal to map the mass fluctuations on

scales of 1 arcmin2, with an average S/N of unity in each cell. The recovery of simulated

mass maps will be discussed in §6.4.2.
Note that the shear sensitivities presented here are conservative estimates, particu-

larly for the deep SNAP survey. The image simulations extend so far only to the depth

of the HDF. Future shear measurement methodology will also be more accurate and sta-

ble on any individual, resolved galaxy than the RRG method used in this paper. Higher

order shape statistics (e.g. shapelets) will be used, as will simultaneous measurements in

multiple colours and pre-selection of early-type galaxy morphologies.

6.3.5 Effect of size cut and pixel scale

Small, faint and highly elliptical objects are excluded from the final galaxy catalog in

the RRG shear measurement method. Of all these cuts, it is the size cut that excludes

the most objects. In an image at the depth of the HDF, about 30% of detected galaxies

are smaller than our adopted size cut at R = 1.7 pixels. The exact position of this cut

has been determined empirically to produce stable results, from experience with both

HST data and our simulated images. The quantitative effects of moving the size cut are

demonstrated in figure 6.8.

If the cut is moved to a larger size, fewer objects are allowed into the final galaxy cat-

alog, and the shear field is sampled in fewer locations. Consequently, both dark matter

maps and cosmic shear statistics become more noisy. If smaller galaxies are included in

the catalog, the shear field is indeed better sampled, but the shape measurement error

is worse on these galaxies. The bottom panel of figure 6.8 shows that moving the size

cut to smaller objects has no net change in the precision of shear recovery: adding noisy

shear estimators to the catalog neither improves nor worsens the measurement. A size

cut at R = 1.7 pixels is optimal at the depth of the HDF and in the observing conditions

modelled by our image simulations. To simplify comparisons of galaxy number density,

the same cut has been applied to data at the depth of the SNAP wide survey. A differ-

ent cut could have been adopted, producing fewer galaxies but each with more accurate

shear estimators: the crucial figure σγ would not change. (This is especially true in the



156 Chapter 6. Future cosmic shear surveys

Figure 6.8: Shear sensitivity as a function of size cut R in the RRG shape measurement method
for the wide SNAP survey (solid line) and at the depth of the HDF (dashed line). The vertical
dotted line shows the fiducial value adopted elsewhere in our analysis. Top panel: the surface
number density of galaxies useable for weak lensing. Middle panel: the rms error σγ = 〈|γ|

2〉1/2

per galaxy for measuring the shear γ, after PSF correction and shear calibration. Bottom panel:
the rms error σγ for measuring the mean shear γ in 1 arcmin2 bins.
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SNAP wide survey because of the relative dearth of small galaxies).

As described in section 6.3.2, we have assumed that an effective image resolution

of 0.04” can be recovered for SNAP data by taking multiple, dithered exposures, and

either stacking them with the DRIZZLE algorithm or by fitting each galaxy’s shape si-

multaneously in them all. The increase in image resolution from these techniques is

vital for cosmic shear measurements. The number density of useable galaxies increases

dramatically, and the measurement of their shapes is improved. Were it not possible to

apply DRIZZLE or to recover this resolution, the large pixel scale currently proposed for

SNAP would seriously impair shear measurement. A size cut at R = 0.12′′ (= 3 pixels in

figure 6.8) would roughly halve the number density of useable sources and correspond-

ingly reduce the sensitivity to gravitational lensing.

6.3.6 Photometric redshift accuracy

Calculating the geometry of a gravitational lens system requires knowledge of the dis-

tance to the source galaxies. Although their shapes can be measured in any colour (usu-

allyR or I is most convenient), future lensing surveys will be greatly improved by multi-

colour observations for reliable photometric redshift (photo-z) estimation. This will re-

duce the current errors due to uncertainty in the redshift distribution of background

sources, error from the single source sheet approximation; allow redshift tomography

(Refregier et al. 2002); and even make possible an entirely 3D mass reconstruction, as

demonstrated in Taylor (2003a), Hu & Keeton (2002), Bacon & Taylor (2002), Massey et al.

(2003) and Jain & Taylor (2003). 3D cluster catalogues/dark matter mapping to literally

trace the evolution of structure during cosmologically interesting epochs.

SNAP’s thermally stable, 3-day long orbit is specifically designed for excellent pho-

tometry on supernovæ. Combining all 9 broad-band filters (6 optical, 3 NIR) will also

provide an unprecedented level of photo-z accuracy, for all morphological types of

galaxies over a large range of redshifts. In this section, we simulate SNAP photomet-

ric data in order to determine this precision.

The HYPERZ code (Bolzonella, Miralles & Pelló 2000) was used by Justin Albert to

generate the observed magnitudes of a realistic catalog of galaxies following Lilly et al.

(1995),
dN

dI
(I) ≃ 100.35×I , (6.7)

where I is the I-band magnitude. The galaxies were assigned a distribution of Spectral

Energy Distribution (SED) types similar to that in real data and containing ellipticals,

spirals and starburst galaxies. Redshifts were assigned at random, and independently

of spectral type, according to Koo et al. (1996) as verified by the DEEP collaboration

(1999),
dN

dz
(z) ≃ z2e−(z/zm)2 , (6.8)
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Figure 6.9: Recovery of redshifts of a realistic population of galaxies using HYPERZ with the
SNAP filter set. Top-left panel: the wide survey, using all 9 colours. Top-right panel: the deep
survey using all 9 colours. Bottom row: the same, but with only the 6 optical colours, as if the
near IR HgCdTe data were not available.

where

zm = 0.722 + 0.149(I − 22.0) (6.9)

(Lanzetta, Yahil & Fernandez-Soto 1996). SNAP colours were then inferred by integrat-

ing the SED across filter profiles, adding an amount of noise corresponding to the expo-

sure time and instrument throughput.

HYPERZ was then used again, to estimate redshifts for the simulated catalogue as if

it were real data. Unlike the image simulations, the redshift catalogues can already be

taken to the depth of both the wide and the deep SNAP surveys by extrapolating func-

tional forms for the luminosity and redshift distributions in equations (6.7) and (6.8).

Magnitude cuts were applied at AB 26.5 (wide) or AB 29.1 (deep) in R. Similar mag-

nitude cuts were made in each filter, chosen at the 10σ detection level of an exponen-

tial disc galaxy with FWHM=0.12′′ (Kim et al. 2002). Past experience with lensing data
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Figure 6.10: ∆zphoto, the rms scatter on photometric error estimation, as a function of increasing
source redshift, z. Top panel: results for the SNAP deep survey. Bottom panel: results for the
SNAP wide survey. In both cases, the solid line shows photometric redshift errors using obser-
vations in all 9 SNAP optical and near IR colours. The dashed lines show errors if the near IR
HgCdTe data were unavailable.

(chapter 3 and Bacon et al. 2000) confirms that this is reasonable S/N limit. Note how-

ever that the size and ellipticity cuts implemented for the simulated images in §6.3.3 are

not included in this procedure.

SNAP’s stable 9-band optical and NIR imaging is ideal to produce exquisite pho-

tometric redshifts for almost all galaxies at z . 3 detected at 5σ in the I-band (see

§6.3.6). This should be compared to the ∼38% completeness of photo-zs possible from

the ground in the COMBO-17 data with a similar cut and a median redshift of R ≃ 24
(Brown et al. 2002). Figure 6.9 shows the precision of photometric redshifts in both the

wide and deep SNAP surveys. All galaxy morphological types are included in this anal-

ysis. Clearly demonstrated is the need for the near IR HgCdTe detectors, a component

of the satellite where a spacecraft has a clear advantage over the ground. Figure 6.10

shows the accuracy of the photo-zs as a function of source (photometric) redshift. Here,
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Figure 6.11: Weak lensing statistics for different cosmological models, adapted from Refregier et
al. (2003b). Variations of 17% in Ωm and of 30% in w about the fiducial ΛCDM model are dis-
played. Left: the weak lensing power spectrum Cl for two galaxy samples with median redshifts
of 0.96 and 1.73. Right: skewness S3 of the convergence κ as a function of scale θ. In each case, the
expected band-averaged 1σ error bars for the SNAP weak lensing surveys are shown as blocks.

∆zphoto(z) is the rms of the core Gaussian in a double-Gaussian fit to horizontal slices

through the distributions in figure 6.9.

6.4 Predicted performance of SNAP

6.4.1 Cosmological parameter constraints

Two- and three-point statistics of the cosmic shear field in the wide SNAP survey will be

used to constrain cosmological parameters. Figure 6.11 shows the effect of varying Ωm

and w on the weak lensing power spectrum and skewness. The lensing power spectrum

is shown for 2 bins of galaxy redshifts which can be derived from photometric redshifts.

The error bars expected for the SNAP wide survey (using A = 200 deg2, σγ = 0.31 and

ng = 100 deg−2) are displayed. The excellent precision afforded by SNAP will easily

distinguish the models shown, and thus detect small changes in the properties of dark

energy (Refregier et al. 2003b).

The properties of the cosmic shear field can be quantified by several statistics. As

before, we shall first use the basic weak lensing power spectrum (2.80). Considerable

uncertainties remain for the non-linear power spectrum P (k, z) in quintessence models

(see discussion in Huterer 2001). Here, we shall use the prescription of Peacock & Dodds

(1996) to evaluate it from the linear power spectrum. The growth factor and COBE

normalization for arbitrary values of w can be computed using the fitting formulæ from

Ma et al. (1999).
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Non-linear gravitational instability is known to produce non-Gaussian features in

the cosmic shear field. The power spectrum therefore does not contain all the informa-

tion available from weak lensing. The most common measure of non-Gaussianity is the

skewness

S3(θ) ≡
〈κ3〉
〈κ2〉2 , (6.10)

where κ is the convergence which can be derived from the shear field γi and the angular

brackets denote averages over circular top-hat cells of radius θ (Bernardeau et al. 1997).

The denominator is the square of the convergence variance which is given by

〈κ2〉 = 〈γ2〉 ≃ 1
2π

∫
dℓ ℓCℓ|Wℓ|2 , (6.11)

where Wℓ ≡ 2J1(ℓθ)/(ℓθ) is the window function for such cells and Cℓ is the lensing

power spectrum given by equation (5). To evaluate the numerator 〈κ3〉 of equation (6),

we use the approximation of Hui (1999) who used the Hyperextended perturbation the-

ory of Scoccimarro & Frieman (1999). While more accurate approximations for third or-

der statistics now exist (see van Waerbeke et al. 2001 and references therein), the present

one suffices for our present purpose. The right-hand panel of figure 6.11 shows the

skewness as a function of scale for the same cosmological models considered in the left-

hand panel. The skewness is only weakly dependent on the angular scale θ, but depends

more strongly on Ωm and w.

We can compute the constraints which can be set on cosmological parameters using

the Fischer matrix

Fij = −
〈
∂ lnL
∂pi∂pj

〉
, (6.12)

where L is the Likelihood function, and pi is a set of model parameters (e.g. Hu &

Tegmark 1999). The inverse F−1 provides a lower limit for the covariance matrix of

the parameters.

As a reference model, we consider a fiducial ΛCDM cosmology with parameters

Ωm = 0.30, Ωb = 0.047, n = 1, h = 0.7, w = −1, consistent with the recent CMB mea-

surements from the WMAP experiment (Spergel et al. 2003). In agreement with this

experiment, we assume that the universe is flat, i.e. that Ω = Ωm+ΩQ = 1. Note that the

error ellipses vary in both size and orientation if a different fiducial cosmological model

is used.

Figure 6.12 shows the constraints on the Ωm–w plane that will be possible from a

weak lensing analysis of the SNAP wide survey. The measurement of the weak lensing

power spectrum at two different redshifts (or “redshift tomography”) provides an im-

portant lever arm upon the growth of structure and the evolution of the power spectrum,

improving the constraints significantly. Adding extra redshift bins has very little effect,
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Figure 6.12: Predicted cosmological parameter constraints from SNAP weak lensing, reproduced
from Refregier et al. (2003b). Contours show 68% CL limits constraints derived from the power
spectrum Cl using the SNAP wide survey (A = 300 deg2, σγ = 0.31 and ng = 100 deg−2). From
top to bottom, the different colours show constraints with and without photometric redshifts,
with the skewness S3 and with all of them combined. A COBE normalisation prior was used.

because of the breadth of the lensing potential and the large overlap between foreground

structures by each bin (making the bins narrower could also enhance the unwanted sig-

nal from intrinsic alignments). The addition of the skewness (at a single angular scale)

does not improve the constraints much either. Figure 6.13 compares the constraints from

weak lensing (using the power spectrum in two redshift bins and the skewness) to those

which have been derived from a current supernova survey(Perlmutter et al. 1999) and a

prediction for the SNAP supernova survey (Perlmutter et al. 2003; Kim et al. 2003; this

includes systematic errors and a marginalisation over w′, the time derivative of w). The

SNAP weak lensing survey will therefore provide constraints on the nature of dark en-

ergy which are comparable with and complementary to those from the SNAP supernova

survey.
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Figure 6.13: A comparison of the constraints derived from weak lensing with SNAP, reproduced
from Refregier et al. (2003b). These constraints use the combined skewness and tomography
statistics as before, but without the COBE prior. They are compared to constraints from current
and future SNAP supernova surveys (Perlmutter et al. 1999; 2003).

6.4.2 Dark matter maps

We can also quantitatively predict the noise level present in the dark matter maps that

could be produced from a space-based weak lensing survey. Because of the high number

density of background galaxies resolved from space, this is one application where a

mission like SNAP will fare particularly better than surveys from the ground.

To simulate observational data, we begin with shear maps created by raytracing

through N-body simulations from Jain, Seljak & White (2000). We then add noise to

these idealized data, corresponding to the predicted levels for SNAP or observing con-

ditions at the currently most successful ground-based facilities. In each case, we then

attempt to recover the input projected mass distribution by inverting the map of the

shear into a map of the convergence κ. Convergence is proportional to the projected

mass along the line of sight, by a factor depending on the geometrical distances between

the observer, source and lensed galaxies (see e.g. Bartelmann & Schneider, 2001).
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Figure 6.14: Reconstructed 2-dimensional maps of convergence κ, each 30′× 30′. Convergence is
proportional to the total matter density along the line of sight, and can be deduced from the ob-
served shear field. Top-left panel: simulated (noise-free) convergence map derived by raytracing
through an SCDM N-body simulations of large-scale structure from Jain, Seljak & White (2000),
in which the sources are assumed to lie at z = 1. Bottom-left panel: same map but smoothed with
a Gaussian kernel with a FWHM of 1 arcmin. Top-right panel: Reconstruction of the convergence
map with a noise realization corresponding to ground-based observations. Statistics are taken
from a WHT survey by Bacon et al. 2002 (ng = 25 arcmin−2 and σγ = 0.39). Middle-right panel:
convergence map with much-improved recovery from the expected noise properties of the SNAP
wide survey (i.e. ng = 105 arcmin−2 and σγ = 0.31). Bottom-right panel: with accuracy expacted
from the SNAP deep survey (ng = 259 arcmin−2 and σγ = 0.36).
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Figure 6.14 shows how the projected mass can be mapped from space and from the

ground. The colour scale shows the convergence κ. The top panel of figure 6.14 shows a

(noise-free) simulated convergence map from the ray tracing simulations of Jain, Seljak

& White (2000) for an SCDM model. Underneath it is a version smoothed by a Gaussian

kernel with an rms of 1′ for comparison to the simulated recovery from observational

data in the right-hand column. The right-hand column shows similarly smoothed mass

maps that would be possible using (from top to bottom) a ground-based survey, the

SNAP wide survey and the SNAP deep survey. These were produced by adding to κ,

before smoothing, Gaussian random noise to each 1 arcmin2 cell with an rms of σγ given

by equation (6.6). For ground based observations, we set σγ = 0.39, and used ng = 25

arcmin−2, as is available for ground-based surveys (e.g. Bacon et al. 2002). For the SNAP

wide and deep survey, the surface density of useable galaxies was taken to be ng = 105

arcmin−2 and 259 arcmin−2, and the rms shear noise per galaxy was taken to be σγ =0.31

and 0.36, respectively, as derived from figure 6.7. The galaxies are assumed to all have a

redshift of z=1, which is a good approximation as long as the median redshift is approxi-

mately that value. As noted above, the surface density and median redshift will actually

be higher for the SNAP deep survey, because only exposure times corresponding to that

of the HDF were simulated.

From the ground, only the strongest features are resolved (i.e. massive clusters).

From space, the very high density of resolved background galaxies allows the recovery

of uniquely detailed maps, including some of the filamentary structure and individual

mass overdensities down to the scale of galaxy groups and clusters. Thus, SNAP offers

the potential of mapping dark matter over very large fields of view, with a precision well

beyond that achievable with ground-based facilities.

The masses and locations of individual clusters can be extracted from such maps

using, for example, theMap statistic (Schneider 1996; 2002), which has been applied suc-

cessfully to find mass peaks in several surveys (e.g. Hoekstra et al. 2002a; Erben et al.

2000) andour own work; or the inversion method of Kaiser & Squires (1993; KS) which

was used by Miyazaki et al. (2002). Marshall, Hobson & Slosar (2003) demonstrate the

effectiveness of maximum entropy techniques to identify structures in KS lensing maps,

using criteria set by Bayesian evidence. White et al. 2002 argue that using any detec-

tion method, a complete mass-selected cluster catalogue from 2D lensing data would

require a high rate of false-positive detections, since the prior probability is for them to

be anywhere throughout a given survey. This has been avoided in practice by secondary

cross-checks of the lensing data with spectroscopy, deep x-ray temperature or SZ ob-

servations. Indeed, two previously unknown clusters have already been found in weak

lensing maps and spectroscopically confirmed by Wittman et al. (2001; 2003). However,

this does make it harder to resolve the debate on the possible existence of baryon-poor

“dark clusters” (e.g. Dahle et al. 2003). These are a speculative population of clusters

which would be physically different to and absent from the catalogues of optically or



166 Chapter 6. Future cosmic shear surveys

x-ray selected clusters. Remaining dark-lens candidates (Erben et al. 2000; Umetsu &

Futamase 2000; Miralles et al. 2002) have currently been eliminated as chance alignments

of background galaxies (or possibly associations with nearby ordinary clusters Gray et

al. 2001; Erben et al. 2003). If others could be found in high S/N weak lensing maps,

they would present a challenge to current models of structure formation, and need to

be accounted for in estimates of Ωm; but they would be unique laboratories in which to

decipher the nature of dark matter.

6.4.3 Outlook

A wide field, space-based imager would be ideally suited to observe weak gravitational

lensing. We have used the relevant aspects of the baseline design for SNAP (Rhodes et al.

2003), and the shapelet-based image simulation method (chapter 5) to predict SNAP’s

sensitivity to shear, taking explicitly into account its instrumental throughput, limita-

tions and sensitivity. This design is almost optimal because many requirements to find

supernovæ are the same as those to measure weak lensing (stable imaging, small PSF,

and excellent multicolour photometry).

The increased image resolution available from space makes possible the construction

of high resolution projected dark matter maps with an rms shear sensitivity of ∼2.5% in

every 1′ cell for the 300 square degrees wide SNAP survey and better than 1.8% for the

SNAP deep survey (c.f. the expected mean signal in a ΛCDM universe is approximately

3%). Since gravitational lensing is sensitive to mass regardless of its nature or state, these

maps will be unique tools for both astrophysics and cosmological parameter estimation.

Statistical properties of the dark matter distribution will be precisely measured at several

cosmological epochs and constraints made on Ωm, σ8 and wq.

SNAP’s simultaneous 9-band observations also open up new opportunities for 3-

dimensional mapping via photometric redshift estimation (Taylor 2003a; Hu & Kee-

ton 2002; Bacon & Taylor 2002). SNAP’s photometry allows an excellent resolution of

∆z = 0.034 in redshift. Massey et al. (2003) show that SNAP will measure mass concen-

trations in full 3D with a 1σ sensitivity of approximately 1 × 1013M⊙ at z ≃ 0.25 and

≃ 5 × 1013M⊙ at z ≃ 0.5. In this fashion it will be possible to directly trace the non-

linear growth of mass structures, and test the gravitational instability theory with high

precision.

Space-based wide field imaging can be combined with weak shear measurements to

produce 2D and 3D mass-selected cluster catalogues down to the scale of galaxy groups.

Mass and light in the local universe can be mapped out with exquisite precision, thus

offering exciting prospects for both astrophysics and cosmology.



7
Conclusions

We have measured the weak gravitational lensing “cosmic shear” signal, using indepen-

dent surveys on two telescopes. This technique is sensitive to all mass, regardless of its

nature and state, and our measurement does not rely upon the calibration of unknown

physical processes like the x-ray mass-temperature relation. Cosmic shear is therefore

an invaluable probe of the distribution of dark matter in the universe, and a direct mea-

sure of the amplitude of mass fluctuations. These are more easily predicted by theory

than the indirect and complicated distribution of light. However, the most important

challenges facing all measurements of weak gravitational lensing concern the control of

systematic error. Imperfect telescope tracking, engineering faults within the telescope

or optical misalignment within the camera, even at a level that is acceptable for most

purposes, can artificially distort images and coherently elongating the shapes of adja-

cent galaxies in a way that mimics cosmic shear. Almost all such effects can therefore

falsely increase the observed signal. They have been controlled in our surveys by careful

data reduction, and data analysis techniques that have been calibrated upon simulated

images with a known amount of shear. The agreement between our two independent

surveys, along with statistical cross-checks that include an E-B decomposition of the ob-

served shear fields, confirm that systematic contaminations are at a negligible level in

our results.

By combining the surveys, we have measured the amplitude of the matter power

spectrum σ8
(
Ωm
0.3

)0.52
= 1.09± 0.12, with 0.25 < Ωm < 0.8, including all contributions to

the 68% CL uncertainty: statistical noise, sample variance, covariance between angular

bins, systematic effects, redshift uncertainty, and marginalisation over priors on other
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parameters. This normalisation parameter is quite poorly constrained by other cosmo-

logical tests, which still disagree at the 3σ level, and which exhibit strong degeneracies

with other parameters. Our measurement is relatively high, and one must remain aware

that any unnoticed and uncorrected systematics would tend to lead to an overestimation

of σ8. However, our measurement does agree within 1σ with other cosmic shear results

from deep surveys (van Waerbeke et al. 2002; Refregier et al. 2002; Rhodes et al. 2003).

Our results are also consistent within 1.5σ with WMAP CMB results (Spergel et al. 2003),

and agree with the old cluster abundance normalisation (Eke et al. 1998; Viana & Liddle

1999; Pierpaoli et al. 2001). Our results disagree at the 3σ level with newer estimates of

the cluster-abundance normalisation, derived using an observational rather than a theo-

retical mass-temperature relation (Borgani et al. 2001; Seljak 2001; Rieprich & Böhringer

200; Viana et al. 2001). This discrepancy could arise from unknown systematics in either

the cluster abundance or cosmic shear methods. Further studies are particularly needed

to understand the difference between the observed mass-temperature relation and that

determined from numerical simulations.

Our results are also incompatible at the 2–3σ level with results from shallower cosmic

shear surveys by Hoekstra et al. (2002) and Jarvis et al. (2002). This discrepancy could be

caused by either the different shape measurement methods used in these surveys (the

object selection cuts vary, and neither of those methods have been calibrated upon simu-

lated images). The discrepancy could alternatively arise from uncertainty in the redshift

distribution of the background, source galaxies in deep data. This uncertainty should be

definitively resolved by the incorporation of DEEP2 galaxy redshifts into future cosmic

shear surveys, or by future wide-field imaging surveys in multiple colours from space.

We have extended the formalism of the “polar shapelets” technique for image anal-

ysis. Shapelets hold promise as a useful method both for shear measurement (Bacon

& Refregier 2003; Massey, Refregier & Bacon in prep.), and for the quantitative classifi-

caation of galaxy morphologies (e.g. Kelly & McKay 2003). We can now take observa-

tional effects into account, including noise, pixellisation and PSF convolution, during

the decomposition of galaxy images from real data. We have developed techniques to

improve the overall image reconstruction by finding the scale length β and number of

modes nmax that produce the best shapelet coefficient fit; and we have written a prac-

tical, iterative algorithm to optimise the decomposition of objects in arbitrary images.

The main component of this procedure is a careful choice of the scale size of the shapelet

basis functions. We have also derived many useful new results in the formalism of polar

shapelets, including expressions for galaxy photometry, astrometry and size parame-

ters as linear combinations of shapelet coefficients, as well as higher-order quantitative

galaxy morphology diagnostics.

We have applied shapelets in this thesis to simulate deep sky images of an arbitrar-

ily large survey area, as might be observed from extended observations with the Hubble

Space Telescope. The simulated images are populated with all morphological types of
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galaxies, based upon those in the Hubble Deep Fields. In order to generate the mor-

phology distribution, we decompose all HDF galaxies into shapelet components. These

form a cloud of points in shapelet space, which we smooth to recover the underlying

probability distribution of real galaxy morphologies. The smoothed distribution is then

resampled, using an unbiased Monte-Carlo technique, to obtain new galaxies.

We place these simulated galaxies onto HDF-sized images, simultaneously including

effects such as PSF, pixellisation, photon shot noise and Gaussian background noise. The

level of detail in the resulting simulated galaxies includes features such as realistic radial

profiles, spiral arms, dust lanes and resolved knots of star formation. We have noted

that the global morphological properties of the simulated galaxy population must match

those of real galaxies if our simulations are to be useful. We have demonstrated that this

is the case by comparing various morphology diagnostics in simulated and real galaxies,

including number counts as a function of magnitude, the size distribution, ellipticity

distribution, and concentration, asymmetry and clumpiness indices. A test involving

purely the shapelet decomposition and reproduction of the HDF galaxies preserves all

of these statistics with high precision, and we conclude that a shapelet decomposition

can successfully capture the morphological properties of all galaxy types. A few slight

discrepancies are introduced to the statistics by perturbing their shapelet coefficients (or

smoothing the morphology distribution) to manufacture genuinely new galaxy shapes.

However, these differences are small compared to the natural variations between objects.

Several minor effects have been well quantified by our various tests, and their causes

understood for correction in future implementations.

The image simulations are in no way specific to gravitational lensing, and may be

used for testing image analysis in various branches of astronomy. However, an impor-

tant application has been to predict the sensitivity to weak gravitational lensing of fu-

ture weak lensing surveys, using the proposed Supernova/Acceleration Probe (SNAP)

satellite as a concrete example. The baseline specifications from engineering models of

SNAP were used to tune the simulations to produce images from a wide-field space-

based mission. Any such mission will face similar engineering constraints and science

requirements for imaging quality, PSF stability, and multicolour photometry.

We have studied the accuracy with which weak lensing measurements could be

made from a variety of survey strategies with SNAP, predicting the subsequent pre-

cisions of parameter constraints and mass reconstructions. We incorporate a realistic

redshift distribution of source galaxies, and calculate the average precision of photo-

metric redshift recovery using the SNAP filter set to be ∆z = 0.034. By combining the

power spectrum measured in several redshift bins and the skewness of the convergence

field, we find that the SNAP wide survey will provide a measure w and Ωm with a

68%CL uncertainty of approximately 12% and 1.5% respectively. These errors include

marginalization over other cosmological parameters.

The high density of background galaxies resolved from space allows projected dark
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matter maps with a rms sensitivity of 3% shear (and therefore S/N≈ 1) in 1 arcmin2 cells.

This will be further improved by the SNAP deep survey, which will be able to detect iso-

lated clusters using a 3D lensing inversion techniques with a 1σ mass sensitivity of ap-

proximately 1013M⊙ at z = 0.25 (Massey et al. 2003). Weak lensing measurements from

space will thus be able to capture non-Gaussian features arising from gravitational in-

stability and map out dark matter in the universe with unprecedented resolution. Since

lensing is also sensitive to all mass, regardless of its nature and state, these maps will

be unique tools for both astrophysics and cosmological parameter estimation in the near

future.
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Copi C., Schramm D. & Turner 1995, Science 267, 192

Crittenden R., Natarajan P., Pen U.-L. & Theuns T. 2000, ApJ 559, 552

Croft R. & Metzler C. 2000, ApJ 545, 561

Dahle H., Pedersen K., Lilje P., Maddox S. & Kaiser N. 2003, ApJ 591, 662

Dahle H., et al. 2002, ApJ 139, 313

Dalal N., Holz D., Chen X. & Frieman J. 2003, ApJ 585, L11

Davis M., Newman J., Faber S. & Phillips A. 2000, Proc. of the ESO/ECF/STSCI work-
shop on Deep Fields

de Vaucouleurs G. 1959, Hand. Physik 53, 275

Dekel A. & Lahav O. 1999, ApJ 520, 24

Driver S. 1999 in “Looking Deep in the Southern Sky”, eds F. Morganti and W. Couch.
(Berlin: Springer-Verlag)

Einstein A. 1917, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften
1, 142

Eke V., Cole S., Frenk C., Henry H. 1998, MNRAS 298, 1145

Epanechnikov V. 1969, Theory of Probability and Its Applications, 14, 153

Erben T., van Waerbeke L., Bertin E., Mellier Y. & Schneider P. 2001, A&A 366, 717

Erben T., van Waerbeke L., Mellier Y., Schneider P., Cuillandre J.-C., Castander J. &
Dantel-Fort M. 2000, A&A 355, 23

Francis P. & Wills B. 1999, in “Quasars and Cosmology”, A.S.P. conference series, eds.
G. Ferland, J. Baldwin

Frenk C., White S. & Davis M. 1983, ApJ 271, 417

Fruchter A. & Hook R. 2002, PASP 114, 144



Gerhard O. 1993, MNRAS 265, 213

Goldberg D. & Natarajan P. 2002, ApJ 564, 65

Gray M., Ellis R., Lewis J., McMahon R. & Firth A. 2001, MNRAS 333, 544

Gray M., Taylor A., Meisenheimer K., Dye S., Wolf C. & Thommes E. 2002, ApJ 568, 141

Groth E. et al. 1994, BAAS, 185, 5309

Hämmerle et al. 2002, A&A 385, 743

Hamana T. et al. 2003, ApJ 597, 98

Heavens A., Refregier A. & Heymans C. 2000, MNRAS 319, 649

Heymans C. & Heavens A. 2003, MNRAS 339, 711

Heymans C., Brown M., Heavens A., Meisenheimer K., Taylor A. & Wolf C. 2003, MN-
RAS in press [astro-ph/0310174]]

Hoekstra H., Franx M., Kuijken K., Squires G. 1998, ApJ 504, 636

Hoekstra H., Yee H., Gladders M., Felipe Barrientos L., Hall P. & Infante L. 2002a, ApJ
572, 55

Hoekstra H., Yee H. & Gladders M. 2002b, ApJ 577, 595

Hoekstra H., van Waerbeke L., Gladders M., Mellier Y. & Yee H. 2002b, ApJ 577, 604

Hu W. & Keeton C. 2002, Phys. Rev. D 66, 3506

Hu W. & Tegmark M. 1999, ApJ 514, L65

Hubble E. 1926, ApJ 64, 321

Hui L. & Zhang J. 2003, ApJ submitted [astro-ph/0205512]

Huterer D. & White M. 2002, 578, L95

Jain B., Seljak U. & White S. 2000, ApJ 530, 547

Jain B. 2002, ApJ 580, L3

Jain B. & Seljak U. 1997, ApJ 484, 560

Jain B. & Taylor A. 2003, Phys. Rev. Lett. 91, 1302

Jarvis M. et al. 2003, AJ 125, 1014

Jing Y. 2002, MNRAS 335, L89

Joffre M. et al. 2000, ApJ 534, L131

Kaiser N., Squires G. & Broadhurst T. 1995, ApJ 449, 460 (KSB)

Kaiser N., Wilson G. & Luppino G. 2000, ApJ submitted [astro-ph/0003338]

Kaiser N. 1992, ApJ 388, 272

Kaiser N. 1998, ApJ 498, 26

Kaiser N. 2000, ApJ 537, 555

Kaiser N. & Squires 1993, ApJ 404, 441

Kaiser et al. 2002, http://poi.ifa.hawaii.edu/poi/documents/poi_book.pdf

Kamionkowski M., Babul A., Cress C. & Refregier A. 1998, MNRAS 301, 1064

Kauffmann G., Guiderdoni B. & White S. 1994, MNRAS 267, 981



Kim A. et al. 2002, Proc. SPIE 4836, 10

King L. et al. 2002, A&A 385, L5

King L. & Schneider P. 2003a, A&A 396, 411

King L. & Schneider P. 2003b, A&A 398, 23

Koo D. et al. 1996, ApJ 469, 535

Krist J. 1995, in “ADASS IV”, A.S.P. conference series 349

Krist J. & Hook R. 1997, “The Tiny Tim User’s Guide” (Baltimore: STScI)

Lahav O. et al. 2001, MNRAS 333, L961

Lampton M. et al. 2002a, Proc. SPIE 4849, 29

Lampton M. et al. 2002b, Proc. SPIE 4854, 80

Lanzetta K., Yahil A. & Fernandez-Soto A. 1996, Nature 381, 759

Lilly S. et al. 1995, ApJ 455, 108

Luppino G. & Kaiser N. 1997 , ApJ 475, 20

Lupton R. 1993, “Statistics in Theory and Practice” (Princeton: Princeton University
Press)

Maoli R., van Waebeke L., Mellier Y., Schneider P., Jain B., Bernardeau F., Erben T., Fort B.
2001, A&A 368, 766

Marleau F. & Simard L. 1998, ApJ 507, 585

Marshall P., Hobson M. & Slosar A., MNRAS submitted [astro-ph/0307098]

Massey R., Bacon D., Refregier A. & Ellis R. 2001, A.S.P. conference series 283, 193, eds.
T. Shanks & N. Metcalfe.

Massey R., Refregier A., Conselice C. & Bacon D. 2003, MNRAS in press [astro-ph/0301449]

Massey R., Refregier A., Rhodes J. et al. 2003, AJ submitted [astro-ph/0304418]

Mellier Y. 1999, ARA&A 37, 127

Meyer Y. 1993, “Wavelets: Algorithms and Applications”, (Philadelphia: Society for In-
dustrial and Applied Mathematics)

Miralles J.-M., Erben T., Haemmerle H., Schneider P., Fosbury R., Freudling W., Pirzkal N.,
Jain B. & White S. 2002, A&A submitted [astro-ph/0202122]

Miyazaki S. et al. 2002a, ApJ 580, L97

Miyazaki S. et al. 2002b, PASJ 54, 833

Mould J., Blandford R., Villumsen J., Brainerd T., Smail I., Small T., Kells W. 1994, MN-
RAS 271, 31

Munshi D. & Jain B. 2001 MNRAS 322 107

Myller-Lebedeff W. 1908, Mathematische Annalen, 64, 388

Odewahn S., Windhorst R., Driver S. & Keel W. 1996, ApJ 472, L13

Pen U., van Waerbeke L. & Mellier Y. 2002, ApJ 567, 31

Peng C., Ho L., Impey C., Chris D. & Rix H.-W. 2002, AJ 124, 226

Percival W. et al. 2001, MNRAS 327, 1297



Perlmutter S. et al. 1999, ApJ 517, 565

Perlmutter S. et al. 2003 http://snap.lbl.gov

Petrosian V. 1976, ApJ 209, L1

Piña R. & Puetter R. 1993, P.A.S.P., 105, 630

Pierpaoli E., Scott D. & White M. 2001, MNRAS 325, 77

Ratnatunga K., Griffiths R. & Ostrander E. 1999, AJ 118, 86

Refregier A., Rhodes J. & Groth E. 2002, ApJ 572, L131

Refregier A. 2003, MNRAS 338, 35 (Shapelets I)

Refregier A. & Bacon D. 2003, MNRAS 338, 48 (Shapelets II)

Refregier A. 2003, ARA&A 41, 645

Refregier A., Massey R., Rhodes J. et al. 2003, AJ submitted [astro-ph/0304419]
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